odiaz1066 commited on
Commit
2870a01
1 Parent(s): 81d2ce0

pushing model

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ Pong-base.cleanrl_model filter=lfs diff=lfs merge=lfs -text
Pong-base.cleanrl_model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4af4b7368797cb8c4e50097d1e16ef0004ded85e6303f1553c8c16905f19930b
3
+ size 6751815
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - PongNoFrameskip-v4
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PongNoFrameskip-v4
16
+ type: PongNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 18.80 +/- 1.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **DQN** Agent Playing **PongNoFrameskip-v4**
25
+
26
+ This is a trained model of a DQN agent playing PongNoFrameskip-v4.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py).
29
+
30
+ ## Get Started
31
+
32
+ To use this model, please install the `cleanrl` package with the following command:
33
+
34
+ ```
35
+ pip install "cleanrl[dqn_atari]"
36
+ python -m cleanrl_utils.enjoy --exp-name dqn_atari --env-id PongNoFrameskip-v4
37
+ ```
38
+
39
+ Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
40
+
41
+
42
+ ## Command to reproduce the training
43
+
44
+ ```bash
45
+ curl -OL https://huggingface.co/odiaz1066/PongNoFrameskip-v4-dqn_atari-seed1/raw/main/dqn_atari.py
46
+ curl -OL https://huggingface.co/odiaz1066/PongNoFrameskip-v4-dqn_atari-seed1/raw/main/pyproject.toml
47
+ curl -OL https://huggingface.co/odiaz1066/PongNoFrameskip-v4-dqn_atari-seed1/raw/main/poetry.lock
48
+ poetry install --all-extras
49
+ python dqn_atari.py --env-id PongNoFrameskip-v4 --track --save-model --capture-video --resume --total-timesteps 0 --upload-model --seed 1 --hf-entity odiaz1066
50
+ ```
51
+
52
+ # Hyperparameters
53
+ ```python
54
+ {'batch_size': 32,
55
+ 'buffer_size': 1000000,
56
+ 'capture_video': True,
57
+ 'checkpoint': False,
58
+ 'checkpoint_frequency': 100000,
59
+ 'cuda': True,
60
+ 'end_e': 0.01,
61
+ 'env_id': 'PongNoFrameskip-v4',
62
+ 'exp_name': 'dqn_atari',
63
+ 'exploration_fraction': 0.1,
64
+ 'gamma': 0.99,
65
+ 'hf_entity': 'odiaz1066',
66
+ 'initial_steps': 0,
67
+ 'learning_rate': 0.0001,
68
+ 'learning_starts': 80000,
69
+ 'num_envs': 1,
70
+ 'resume': True,
71
+ 'rotate': False,
72
+ 'save_model': True,
73
+ 'seed': 1,
74
+ 'start_e': 1,
75
+ 'target_network_frequency': 1000,
76
+ 'tau': 1.0,
77
+ 'torch_deterministic': True,
78
+ 'total_timesteps': 0,
79
+ 'track': True,
80
+ 'train_frequency': 4,
81
+ 'upload_model': True,
82
+ 'wandb_entity': None,
83
+ 'wandb_project_name': 'lagomorph'}
84
+ ```
85
+
dqn_atari.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_ataripy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import time
6
+ from distutils.util import strtobool
7
+
8
+ import gymnasium as gym
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torch.optim as optim
14
+ from stable_baselines3.common.atari_wrappers import (
15
+ ClipRewardEnv,
16
+ EpisodicLifeEnv,
17
+ FireResetEnv,
18
+ MaxAndSkipEnv,
19
+ NoopResetEnv,
20
+ )
21
+ from stable_baselines3.common.buffers import ReplayBuffer
22
+ from torch.utils.tensorboard import SummaryWriter
23
+ from typing import Callable
24
+ from dotenv import load_dotenv
25
+ import sys
26
+ sys.path.append('.')
27
+ from wrappers.rotation import RotateObservation
28
+
29
+ def parse_args():
30
+ # fmt: off
31
+ parser = argparse.ArgumentParser()
32
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
33
+ help="the name of this experiment")
34
+ parser.add_argument("--seed", type=int, default=1,
35
+ help="seed of the experiment")
36
+ parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
37
+ help="if toggled, `torch.backends.cudnn.deterministic=False`")
38
+ parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
39
+ help="if toggled, cuda will be enabled by default")
40
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
41
+ help="if toggled, this experiment will be tracked with Weights and Biases")
42
+ parser.add_argument("--wandb-project-name", type=str, default="lagomorph",
43
+ help="the wandb's project name")
44
+ parser.add_argument("--wandb-entity", type=str, default=None,
45
+ help="the entity (team) of wandb's project")
46
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
47
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
48
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
49
+ help="whether to save model into the `runs/{run_name}` folder")
50
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
51
+ help="whether to upload the saved model to huggingface")
52
+ parser.add_argument("--hf-entity", type=str, default="",
53
+ help="the user or org name of the model repository from the Hugging Face Hub")
54
+
55
+ # Algorithm specific arguments
56
+ parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
57
+ help="the id of the environment")
58
+ parser.add_argument("--total-timesteps", type=int, default=10000000,
59
+ help="total timesteps of the experiments")
60
+ parser.add_argument("--learning-rate", type=float, default=1e-4,
61
+ help="the learning rate of the optimizer")
62
+ parser.add_argument("--num-envs", type=int, default=1,
63
+ help="the number of parallel game environments")
64
+ parser.add_argument("--buffer-size", type=int, default=1000000,
65
+ help="the replay memory buffer size")
66
+ parser.add_argument("--gamma", type=float, default=0.99,
67
+ help="the discount factor gamma")
68
+ parser.add_argument("--tau", type=float, default=1.,
69
+ help="the target network update rate")
70
+ parser.add_argument("--target-network-frequency", type=int, default=1000,
71
+ help="the timesteps it takes to update the target network")
72
+ parser.add_argument("--batch-size", type=int, default=32,
73
+ help="the batch size of sample from the reply memory")
74
+ parser.add_argument("--start-e", type=float, default=1,
75
+ help="the starting epsilon for exploration")
76
+ parser.add_argument("--end-e", type=float, default=0.01,
77
+ help="the ending epsilon for exploration")
78
+ parser.add_argument("--exploration-fraction", type=float, default=0.10,
79
+ help="the fraction of `total-timesteps` it takes from start-e to go end-e")
80
+ parser.add_argument("--learning-starts", type=int, default=80000,
81
+ help="timestep to start learning")
82
+ parser.add_argument("--train-frequency", type=int, default=4,
83
+ help="the frequency of training")
84
+ parser.add_argument("--checkpoint", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
85
+ help="whether to checkpoint the model")
86
+ parser.add_argument("--checkpoint-frequency", type=int, default=100000,
87
+ help="the frequency of saving checkpoint")
88
+ parser.add_argument("--resume", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
89
+ help="resume training from the last checkpoint")
90
+ parser.add_argument("--initial-steps", type=int, default=0,
91
+ help="the number of steps that were done in previous training runs")
92
+ parser.add_argument("--rotate", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
93
+ help="whether to rotate the observation sometimes")
94
+ args = parser.parse_args()
95
+ # fmt: on
96
+ assert args.num_envs == 1, "vectorized envs are not supported at the moment"
97
+
98
+ return args
99
+
100
+
101
+ def make_env(env_id, seed, idx, capture_video, run_name):
102
+ def thunk():
103
+ if capture_video and idx == 0:
104
+ env = gym.make(env_id, render_mode="rgb_array")
105
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
106
+ else:
107
+ env = gym.make(env_id)
108
+ env = gym.wrappers.RecordEpisodeStatistics(env)
109
+ env = NoopResetEnv(env, noop_max=30)
110
+ env = MaxAndSkipEnv(env, skip=4)
111
+ env = EpisodicLifeEnv(env)
112
+ if "FIRE" in env.unwrapped.get_action_meanings():
113
+ env = FireResetEnv(env)
114
+ env = ClipRewardEnv(env)
115
+ env = gym.wrappers.ResizeObservation(env, (84, 84))
116
+ env = gym.wrappers.GrayScaleObservation(env)
117
+ if args.rotate:
118
+ env = RotateObservation(env)
119
+ env = gym.wrappers.FrameStack(env, 4)
120
+ env.action_space.seed(seed)
121
+
122
+ return env
123
+
124
+ return thunk
125
+
126
+
127
+ # ALGO LOGIC: initialize agent here:
128
+ class QNetwork(nn.Module):
129
+ def __init__(self, env):
130
+ super().__init__()
131
+ self.network = nn.Sequential(
132
+ nn.Conv2d(4, 32, 8, stride=4),
133
+ nn.ReLU(),
134
+ nn.Conv2d(32, 64, 4, stride=2),
135
+ nn.ReLU(),
136
+ nn.Conv2d(64, 64, 3, stride=1),
137
+ nn.ReLU(),
138
+ nn.Flatten(),
139
+ nn.Linear(3136, 512),
140
+ nn.ReLU(),
141
+ nn.Linear(512, env.single_action_space.n),
142
+ )
143
+
144
+ def forward(self, x):
145
+ return self.network(x / 255.0)
146
+
147
+
148
+ def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
149
+ slope = (end_e - start_e) / duration
150
+ return max(slope * t + start_e, end_e)
151
+
152
+ def evaluate(
153
+ model_path: str,
154
+ make_env: Callable,
155
+ env_id: str,
156
+ eval_episodes: int,
157
+ run_name: str,
158
+ Model: torch.nn.Module,
159
+ device: torch.device = torch.device("cpu"),
160
+ epsilon: float = 0.05,
161
+ capture_video: bool = True,
162
+ ):
163
+ envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, 0, capture_video, run_name)])
164
+ model = Model(envs).to(device)
165
+ model.load_state_dict(torch.load(model_path, map_location=device))
166
+ model.eval()
167
+
168
+ obs, _ = envs.reset()
169
+ episodic_returns = []
170
+ while len(episodic_returns) < eval_episodes:
171
+ if random.random() < epsilon:
172
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
173
+ else:
174
+ q_values = model(torch.Tensor(obs).to(device))
175
+ actions = torch.argmax(q_values, dim=1).cpu().numpy()
176
+ next_obs, _, _, _, infos = envs.step(actions)
177
+ if "final_info" in infos:
178
+ for info in infos["final_info"]:
179
+ if "episode" in info:
180
+ print(f"eval_episode={len(episodic_returns)}, episodic_return={info['episode']['r']}")
181
+ episodic_returns += [info["episode"]["r"]]
182
+ obs = next_obs
183
+
184
+ return episodic_returns
185
+
186
+ if __name__ == "__main__":
187
+ import stable_baselines3 as sb3
188
+
189
+ if sb3.__version__ < "2.0":
190
+ raise ValueError(
191
+ """Ongoing migration: run the following command to install the new dependencies:
192
+
193
+ poetry run pip install "stable_baselines3==2.0.0a1" "gymnasium[atari,accept-rom-license]==0.28.1" "ale-py==0.8.1"
194
+ """
195
+ )
196
+ args = parse_args()
197
+ load_dotenv()
198
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
199
+ if args.track:
200
+ import wandb
201
+
202
+ wandb.init(
203
+ project=args.wandb_project_name,
204
+ entity=args.wandb_entity,
205
+ sync_tensorboard=True,
206
+ config=vars(args),
207
+ name=run_name,
208
+ monitor_gym=True,
209
+ save_code=True,
210
+ )
211
+ writer = SummaryWriter(f"runs/{run_name}")
212
+ writer.add_text(
213
+ "hyperparameters",
214
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
215
+ )
216
+
217
+ # TRY NOT TO MODIFY: seeding
218
+ random.seed(args.seed)
219
+ np.random.seed(args.seed)
220
+ torch.manual_seed(args.seed)
221
+ torch.backends.cudnn.deterministic = args.torch_deterministic
222
+
223
+ device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
224
+
225
+ # env setup
226
+ envs = gym.vector.SyncVectorEnv(
227
+ [make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
228
+ )
229
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
230
+
231
+ q_network = QNetwork(envs).to(device)
232
+ optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
233
+ target_network = QNetwork(envs).to(device)
234
+ target_network.load_state_dict(q_network.state_dict())
235
+
236
+ rb = ReplayBuffer(
237
+ args.buffer_size,
238
+ envs.single_observation_space,
239
+ envs.single_action_space,
240
+ device,
241
+ optimize_memory_usage=True,
242
+ handle_timeout_termination=False,
243
+ )
244
+ start_time = time.time()
245
+
246
+ if args.resume:
247
+ checkpoint_path = f"models/Pong.checkpoint.pth"
248
+ q_network.load_state_dict(torch.load(checkpoint_path))
249
+ print(f"checkpoint loaded from {checkpoint_path}")
250
+
251
+ # TRY NOT TO MODIFY: start the game
252
+ obs, _ = envs.reset(seed=args.seed)
253
+ for global_step in range(args.initial_steps, args.total_timesteps):
254
+ # ALGO LOGIC: put action logic here
255
+ epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
256
+ if random.random() < epsilon:
257
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
258
+ else:
259
+ q_values = q_network(torch.Tensor(obs).to(device))
260
+ actions = torch.argmax(q_values, dim=1).cpu().numpy()
261
+
262
+ # TRY NOT TO MODIFY: execute the game and log data.
263
+ next_obs, rewards, terminated, truncated, infos = envs.step(actions)
264
+
265
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
266
+ if "final_info" in infos:
267
+ for info in infos["final_info"]:
268
+ # Skip the envs that are not done
269
+ if "episode" not in info:
270
+ continue
271
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
272
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
273
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
274
+ writer.add_scalar("charts/epsilon", epsilon, global_step)
275
+
276
+ # TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
277
+ real_next_obs = next_obs.copy()
278
+ for idx, d in enumerate(truncated):
279
+ if d:
280
+ real_next_obs[idx] = infos["final_observation"][idx]
281
+ rb.add(obs, real_next_obs, actions, rewards, terminated, infos)
282
+
283
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
284
+ obs = next_obs
285
+
286
+ # ALGO LOGIC: training.
287
+ if global_step > args.learning_starts:
288
+ if global_step % args.train_frequency == 0:
289
+ data = rb.sample(args.batch_size)
290
+ with torch.no_grad():
291
+ target_max, _ = target_network(data.next_observations).max(dim=1)
292
+ td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
293
+ old_val = q_network(data.observations).gather(1, data.actions).squeeze()
294
+ loss = F.mse_loss(td_target, old_val)
295
+
296
+ if global_step % 100 == 0:
297
+ writer.add_scalar("losses/td_loss", loss, global_step)
298
+ writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
299
+ print("SPS:", int(global_step / (time.time() - start_time)))
300
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
301
+
302
+ # optimize the model
303
+ optimizer.zero_grad()
304
+ loss.backward()
305
+ optimizer.step()
306
+
307
+ # update target network
308
+ if global_step % args.target_network_frequency == 0:
309
+ for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
310
+ target_network_param.data.copy_(
311
+ args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
312
+ )
313
+
314
+ # save checkpoint
315
+ if (args.checkpoint):
316
+ if global_step % args.checkpoint_frequency == 0:
317
+ checkpoint_path = f"runs/{run_name}/{args.exp_name}.checkpoint.pth"
318
+ torch.save(q_network.state_dict(), checkpoint_path)
319
+ print(f"checkpoint saved to {checkpoint_path}")
320
+ if args.track:
321
+ artifact = wandb.Artifact(f"{args.exp_name}_checkpoint", "checkpoint")
322
+ artifact.add_file(checkpoint_path)
323
+ wandb.log_artifact(artifact)
324
+
325
+
326
+ if args.save_model:
327
+ model_path = f"runs/{run_name}/Pong-base.cleanrl_model"
328
+ torch.save(q_network.state_dict(), model_path)
329
+ print(f"model saved to {model_path}")
330
+ if args.track:
331
+ artifact = wandb.Artifact(f"Pong-base_model", "model")
332
+ artifact.add_file(model_path)
333
+ wandb.log_artifact(artifact)
334
+
335
+ episodic_returns = evaluate(
336
+ model_path,
337
+ make_env,
338
+ args.env_id,
339
+ eval_episodes=10,
340
+ run_name=f"{run_name}-eval",
341
+ Model=QNetwork,
342
+ device=device,
343
+ epsilon=0.05,
344
+ )
345
+ for idx, episodic_return in enumerate(episodic_returns):
346
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
347
+
348
+ if args.upload_model:
349
+ #TODO: Currently gives an error. *Maybe* I'll get around to fixing it once everything else works correctly.
350
+ from utils.huggingface import push_to_hub
351
+
352
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
353
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
354
+ push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
355
+
356
+ envs.close()
357
+ writer.close()
events.out.tfevents.1685407072.ccaa1a6bd80b.4247.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1082b650fa6317e84b963fb47d61d01be3fcb522b9177bc1b1799a8901a93c35
3
+ size 1305
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "lagomorph"
3
+ version = "0.1.0"
4
+ description = "Fork of CleanRL focused on DQN training"
5
+ packages = [
6
+ { include = "envs" },
7
+ { include = "utils" },
8
+ ]
9
+ keywords = ["reinforcement", "machine", "learning", "research"]
10
+ license="MIT"
11
+ readme = "README.md"
replay.mp4 ADDED
Binary file (302 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari__1__1685407068-eval/rl-video-episode-0.mp4 ADDED
Binary file (385 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari__1__1685407068-eval/rl-video-episode-1.mp4 ADDED
Binary file (346 kB). View file
 
videos/PongNoFrameskip-v4__dqn_atari__1__1685407068-eval/rl-video-episode-8.mp4 ADDED
Binary file (302 kB). View file