Add BLASER-REF model and config
Browse files- README.md +288 -0
- config.json +17 -0
- model.safetensors +3 -0
- modeling_blaser.py +136 -0
README.md
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
language:
|
| 4 |
+
- ace
|
| 5 |
+
- acm
|
| 6 |
+
- acq
|
| 7 |
+
- aeb
|
| 8 |
+
- af
|
| 9 |
+
- ajp
|
| 10 |
+
- ak
|
| 11 |
+
- am
|
| 12 |
+
- apc
|
| 13 |
+
- ar
|
| 14 |
+
- ars
|
| 15 |
+
- ary
|
| 16 |
+
- arz
|
| 17 |
+
- as
|
| 18 |
+
- ast
|
| 19 |
+
- awa
|
| 20 |
+
- ay
|
| 21 |
+
- azb
|
| 22 |
+
- azj
|
| 23 |
+
- ba
|
| 24 |
+
- bm
|
| 25 |
+
- ban
|
| 26 |
+
- be
|
| 27 |
+
- bem
|
| 28 |
+
- bn
|
| 29 |
+
- bho
|
| 30 |
+
- bjn
|
| 31 |
+
- bo
|
| 32 |
+
- bs
|
| 33 |
+
- bug
|
| 34 |
+
- bg
|
| 35 |
+
- ca
|
| 36 |
+
- ceb
|
| 37 |
+
- cs
|
| 38 |
+
- cjk
|
| 39 |
+
- ckb
|
| 40 |
+
- crh
|
| 41 |
+
- cy
|
| 42 |
+
- da
|
| 43 |
+
- de
|
| 44 |
+
- dik
|
| 45 |
+
- dyu
|
| 46 |
+
- dz
|
| 47 |
+
- el
|
| 48 |
+
- en
|
| 49 |
+
- eo
|
| 50 |
+
- et
|
| 51 |
+
- eu
|
| 52 |
+
- ee
|
| 53 |
+
- fo
|
| 54 |
+
- fa
|
| 55 |
+
- fj
|
| 56 |
+
- fi
|
| 57 |
+
- fon
|
| 58 |
+
- fr
|
| 59 |
+
- fur
|
| 60 |
+
- ff
|
| 61 |
+
- gd
|
| 62 |
+
- ga
|
| 63 |
+
- gl
|
| 64 |
+
- gn
|
| 65 |
+
- gu
|
| 66 |
+
- ht
|
| 67 |
+
- ha
|
| 68 |
+
- he
|
| 69 |
+
- hi
|
| 70 |
+
- hne
|
| 71 |
+
- hr
|
| 72 |
+
- hu
|
| 73 |
+
- hy
|
| 74 |
+
- ig
|
| 75 |
+
- ilo
|
| 76 |
+
- id
|
| 77 |
+
- is
|
| 78 |
+
- it
|
| 79 |
+
- jv
|
| 80 |
+
- ja
|
| 81 |
+
- kab
|
| 82 |
+
- kac
|
| 83 |
+
- kam
|
| 84 |
+
- kn
|
| 85 |
+
- ks
|
| 86 |
+
- ka
|
| 87 |
+
- kr
|
| 88 |
+
- kk
|
| 89 |
+
- kbp
|
| 90 |
+
- kea
|
| 91 |
+
- km
|
| 92 |
+
- ki
|
| 93 |
+
- rw
|
| 94 |
+
- ky
|
| 95 |
+
- kmb
|
| 96 |
+
- kg
|
| 97 |
+
- ko
|
| 98 |
+
- kmr
|
| 99 |
+
- lo
|
| 100 |
+
- lv
|
| 101 |
+
- lij
|
| 102 |
+
- li
|
| 103 |
+
- ln
|
| 104 |
+
- lt
|
| 105 |
+
- lmo
|
| 106 |
+
- ltg
|
| 107 |
+
- lb
|
| 108 |
+
- lua
|
| 109 |
+
- lg
|
| 110 |
+
- luo
|
| 111 |
+
- lus
|
| 112 |
+
- mag
|
| 113 |
+
- mai
|
| 114 |
+
- ml
|
| 115 |
+
- mr
|
| 116 |
+
- min
|
| 117 |
+
- mk
|
| 118 |
+
- plt
|
| 119 |
+
- mt
|
| 120 |
+
- mni
|
| 121 |
+
- mn
|
| 122 |
+
- mos
|
| 123 |
+
- mi
|
| 124 |
+
- ms
|
| 125 |
+
- my
|
| 126 |
+
- nl
|
| 127 |
+
- nn
|
| 128 |
+
- nb
|
| 129 |
+
- ne
|
| 130 |
+
- nso
|
| 131 |
+
- nus
|
| 132 |
+
- ny
|
| 133 |
+
- oc
|
| 134 |
+
- gaz
|
| 135 |
+
- ory
|
| 136 |
+
- pag
|
| 137 |
+
- pa
|
| 138 |
+
- pap
|
| 139 |
+
- pl
|
| 140 |
+
- pt
|
| 141 |
+
- prs
|
| 142 |
+
- pbt
|
| 143 |
+
- qu
|
| 144 |
+
- ro
|
| 145 |
+
- rn
|
| 146 |
+
- ru
|
| 147 |
+
- sg
|
| 148 |
+
- sa
|
| 149 |
+
- sat
|
| 150 |
+
- scn
|
| 151 |
+
- shn
|
| 152 |
+
- si
|
| 153 |
+
- sk
|
| 154 |
+
- sl
|
| 155 |
+
- sm
|
| 156 |
+
- sn
|
| 157 |
+
- sd
|
| 158 |
+
- so
|
| 159 |
+
- st
|
| 160 |
+
- es
|
| 161 |
+
- als
|
| 162 |
+
- sc
|
| 163 |
+
- sr
|
| 164 |
+
- ss
|
| 165 |
+
- su
|
| 166 |
+
- sv
|
| 167 |
+
- sw
|
| 168 |
+
- szl
|
| 169 |
+
- ta
|
| 170 |
+
- tt
|
| 171 |
+
- te
|
| 172 |
+
- tg
|
| 173 |
+
- tl
|
| 174 |
+
- th
|
| 175 |
+
- ti
|
| 176 |
+
- taq
|
| 177 |
+
- tpi
|
| 178 |
+
- tn
|
| 179 |
+
- ts
|
| 180 |
+
- tk
|
| 181 |
+
- tum
|
| 182 |
+
- tr
|
| 183 |
+
- tw
|
| 184 |
+
- tzm
|
| 185 |
+
- ug
|
| 186 |
+
- uk
|
| 187 |
+
- umb
|
| 188 |
+
- ur
|
| 189 |
+
- uz
|
| 190 |
+
- vec
|
| 191 |
+
- vi
|
| 192 |
+
- war
|
| 193 |
+
- wo
|
| 194 |
+
- xh
|
| 195 |
+
- yi
|
| 196 |
+
- yo
|
| 197 |
+
- yue
|
| 198 |
+
- zh
|
| 199 |
+
- zu
|
| 200 |
+
language_details: >-
|
| 201 |
+
ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab,
|
| 202 |
+
aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab,
|
| 203 |
+
asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl,
|
| 204 |
+
bam_Latn, ban_Latn, bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab,
|
| 205 |
+
bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn,
|
| 206 |
+
cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn,
|
| 207 |
+
dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn,
|
| 208 |
+
ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn,
|
| 209 |
+
fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr,
|
| 210 |
+
hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn,
|
| 211 |
+
hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
|
| 212 |
+
jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva,
|
| 213 |
+
kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr,
|
| 214 |
+
kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn,
|
| 215 |
+
lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn,
|
| 216 |
+
ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva,
|
| 217 |
+
mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn,
|
| 218 |
+
mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn,
|
| 219 |
+
nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn,
|
| 220 |
+
gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn,
|
| 221 |
+
prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn,
|
| 222 |
+
san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
|
| 223 |
+
smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn,
|
| 224 |
+
srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn,
|
| 225 |
+
tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi,
|
| 226 |
+
taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn,
|
| 227 |
+
tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab,
|
| 228 |
+
uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
|
| 229 |
+
yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn
|
| 230 |
+
pipeline_tag: sentence-similarity
|
| 231 |
+
---
|
| 232 |
+
|
| 233 |
+
# BLASER QE (Ported)
|
| 234 |
+
|
| 235 |
+
This is a **ported version of the BLASER quality estimation (REF) model** originally developed in [BLASER: Bilingual Language-Agnostic Sentence Representations](https://huggingface.co/facebook/blaser-2.0-ref).
|
| 236 |
+
|
| 237 |
+
- **Ported to Hugging Face Transformers**: no dependency on Fairseq.
|
| 238 |
+
- **Uses embeddings from the ported SONAR 200 multilingual text encoder** ([cointegrated/SONAR_200_text_encoder](https://huggingface.co/cointegrated/SONAR_200_text_encoder)).
|
| 239 |
+
- **Supports the same 202 languages** as SONAR / NLLB-200.
|
| 240 |
+
- **Outputs BLASER scores on a 1–5 scale** for a source–MT–REF triplet.
|
| 241 |
+
|
| 242 |
+
> ⚠️ This is **not the original implementation**. Attribution goes to the original BLASER authors.
|
| 243 |
+
|
| 244 |
+
---
|
| 245 |
+
|
| 246 |
+
## How to compute QE scores
|
| 247 |
+
|
| 248 |
+
```python
|
| 249 |
+
import torch
|
| 250 |
+
from transformers import AutoTokenizer, AutoModel
|
| 251 |
+
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
| 252 |
+
|
| 253 |
+
# 1. Load SONAR encoder
|
| 254 |
+
sonar_model_name = "cointegrated/SONAR_200_text_encoder"
|
| 255 |
+
encoder = M2M100Encoder.from_pretrained(sonar_model_name)
|
| 256 |
+
tokenizer = AutoTokenizer.from_pretrained(sonar_model_name)
|
| 257 |
+
|
| 258 |
+
def encode_mean_pool(texts, tokenizer, encoder, lang='eng_Latn', norm=False):
|
| 259 |
+
tokenizer.src_lang = lang
|
| 260 |
+
with torch.inference_mode():
|
| 261 |
+
batch = tokenizer(texts, return_tensors='pt', padding=True)
|
| 262 |
+
seq_embs = encoder(**batch).last_hidden_state
|
| 263 |
+
mask = batch.attention_mask
|
| 264 |
+
mean_emb = (seq_embs * mask.unsqueeze(-1)).sum(1) / mask.unsqueeze(-1).sum(1)
|
| 265 |
+
if norm:
|
| 266 |
+
mean_emb = torch.nn.functional.normalize(mean_emb)
|
| 267 |
+
return mean_emb
|
| 268 |
+
|
| 269 |
+
# Example sentences
|
| 270 |
+
src_sentences = ["Le chat s'assit sur le tapis."]
|
| 271 |
+
mt_sentences = ["The cat sat down on the carpet."] # Example MT output
|
| 272 |
+
ref_sentences = ["The cat sat on the mat."] # Example reference translation
|
| 273 |
+
|
| 274 |
+
# Encode source and MT sentences
|
| 275 |
+
src_embs = encode_mean_pool(src_sentences, tokenizer, encoder, lang="fra_Latn")
|
| 276 |
+
mt_embs = encode_mean_pool(mt_sentences, tokenizer, encoder, lang="eng_Latn")
|
| 277 |
+
ref_embs = encode_mean_pool(ref_sentences, tokenizer, encoder, lang="eng_Latn")
|
| 278 |
+
|
| 279 |
+
# 2. Load BLASER QE model (ported)
|
| 280 |
+
ref_model_name = "oist/blaser-2.0-ref-ported"
|
| 281 |
+
ref_model = AutoModel.from_pretrained(qe_model_name, trust_remote_code=True)
|
| 282 |
+
ref_model.eval() # set to evaluation mode
|
| 283 |
+
|
| 284 |
+
# 3. Compute QE scores
|
| 285 |
+
with torch.inference_mode():
|
| 286 |
+
ref_scores = ref_model(src_embs, mt_embs, ref_embs) # expects source and MT embeddings, and ref embeddings
|
| 287 |
+
print("Blaser score shape:", ref_scores.shape)
|
| 288 |
+
print("Blaser scores:", ref_scores[0])
|
config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "TANH",
|
| 3 |
+
"architectures": ["BlaserModel"],
|
| 4 |
+
"dropout": 0.1,
|
| 5 |
+
"embedding_dim": 1024,
|
| 6 |
+
"hidden_dims": [3072, 1536],
|
| 7 |
+
"input_form": "COMET",
|
| 8 |
+
"model_type": "blaser",
|
| 9 |
+
"norm_emb": true,
|
| 10 |
+
"output_act": false,
|
| 11 |
+
"output_dim": 1,
|
| 12 |
+
"transformers_version": "4.56.1",
|
| 13 |
+
"auto_map": {
|
| 14 |
+
"AutoConfig": "modeling_blaser.BlaserConfig",
|
| 15 |
+
"AutoModel": "modeling_blaser.BlaserModel"
|
| 16 |
+
}
|
| 17 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4836d62d1e5540890dad7a9ac6f41317522a71dd195f3a813c991c87522225c1
|
| 3 |
+
size 94396980
|
modeling_blaser.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import List, Optional
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# ---------------- CONFIG ---------------- #
|
| 10 |
+
class BlaserConfig(PretrainedConfig):
|
| 11 |
+
model_type = "blaser"
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
embedding_dim=1024,
|
| 16 |
+
output_dim=1,
|
| 17 |
+
hidden_dims=None,
|
| 18 |
+
dropout=0.1,
|
| 19 |
+
activation="TANH",
|
| 20 |
+
input_form="COMET",
|
| 21 |
+
norm_emb=True,
|
| 22 |
+
output_act=False,
|
| 23 |
+
**kwargs,
|
| 24 |
+
):
|
| 25 |
+
super().__init__(**kwargs)
|
| 26 |
+
self.embedding_dim = embedding_dim
|
| 27 |
+
self.output_dim = output_dim
|
| 28 |
+
self.hidden_dims = hidden_dims if hidden_dims is not None else [3072, 1536]
|
| 29 |
+
self.dropout = dropout
|
| 30 |
+
self.activation = activation
|
| 31 |
+
self.input_form = input_form
|
| 32 |
+
self.norm_emb = norm_emb
|
| 33 |
+
self.output_act = output_act
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# ---------------- CORE MODEL ---------------- #
|
| 37 |
+
ACTIVATIONS = {"TANH": nn.Tanh, "RELU": nn.ReLU}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class BlaserCore(nn.Module):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
embedding_dim: int,
|
| 44 |
+
output_dim: int,
|
| 45 |
+
hidden_dims: List[int],
|
| 46 |
+
dropout: float,
|
| 47 |
+
activation: str,
|
| 48 |
+
input_form: str,
|
| 49 |
+
norm_emb: bool,
|
| 50 |
+
output_act: bool,
|
| 51 |
+
):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.input_form = input_form
|
| 54 |
+
self.norm_emb = norm_emb
|
| 55 |
+
|
| 56 |
+
if input_form == "COMET":
|
| 57 |
+
embedding_dim *= 6
|
| 58 |
+
elif input_form == "QE":
|
| 59 |
+
embedding_dim *= 4
|
| 60 |
+
else:
|
| 61 |
+
raise ValueError(f"Unrecognized input_form: {input_form}")
|
| 62 |
+
if activation not in ACTIVATIONS:
|
| 63 |
+
raise ValueError(f"Unrecognized activation: {activation}")
|
| 64 |
+
|
| 65 |
+
modules: List[nn.Module] = []
|
| 66 |
+
if hidden_dims:
|
| 67 |
+
if dropout > 0:
|
| 68 |
+
modules.append(nn.Dropout(p=dropout))
|
| 69 |
+
nprev = embedding_dim
|
| 70 |
+
for h in hidden_dims:
|
| 71 |
+
modules.append(nn.Linear(nprev, h))
|
| 72 |
+
modules.append(ACTIVATIONS[activation]())
|
| 73 |
+
if dropout > 0:
|
| 74 |
+
modules.append(nn.Dropout(p=dropout))
|
| 75 |
+
nprev = h
|
| 76 |
+
modules.append(nn.Linear(nprev, output_dim))
|
| 77 |
+
if output_act:
|
| 78 |
+
modules.append(nn.Tanh())
|
| 79 |
+
else:
|
| 80 |
+
modules.append(nn.Linear(embedding_dim, output_dim))
|
| 81 |
+
|
| 82 |
+
self.mlp = nn.Sequential(*modules)
|
| 83 |
+
|
| 84 |
+
def _norm(self, emb: Optional[Tensor]) -> Optional[Tensor]:
|
| 85 |
+
return F.normalize(emb) if (emb is not None and self.norm_emb) else emb
|
| 86 |
+
|
| 87 |
+
def _featurize(self, src: Tensor, mt: Tensor, ref: Optional[Tensor] = None) -> Tensor:
|
| 88 |
+
if self.input_form == "COMET":
|
| 89 |
+
if ref is None:
|
| 90 |
+
raise ValueError("COMET input_form requires reference embedding")
|
| 91 |
+
return torch.cat(
|
| 92 |
+
[ref, mt, src * mt, ref * mt, torch.abs(mt - src), torch.abs(mt - ref)],
|
| 93 |
+
dim=-1,
|
| 94 |
+
)
|
| 95 |
+
elif self.input_form == "QE":
|
| 96 |
+
return torch.cat([src, mt, src * mt, torch.abs(mt - src)], dim=-1)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# ---------------- HF MODEL WRAPPER ---------------- #
|
| 100 |
+
class BlaserModel(PreTrainedModel):
|
| 101 |
+
config_class = BlaserConfig
|
| 102 |
+
|
| 103 |
+
def __init__(self, config: BlaserConfig):
|
| 104 |
+
super().__init__(config)
|
| 105 |
+
# Directly assign the Sequential MLP to self.mlp
|
| 106 |
+
core = BlaserCore(
|
| 107 |
+
embedding_dim=config.embedding_dim,
|
| 108 |
+
output_dim=config.output_dim,
|
| 109 |
+
hidden_dims=config.hidden_dims,
|
| 110 |
+
dropout=config.dropout,
|
| 111 |
+
activation=config.activation,
|
| 112 |
+
input_form=config.input_form,
|
| 113 |
+
norm_emb=config.norm_emb,
|
| 114 |
+
output_act=config.output_act,
|
| 115 |
+
)
|
| 116 |
+
self.mlp = core.mlp
|
| 117 |
+
self.input_form = core.input_form
|
| 118 |
+
self.norm_emb = core.norm_emb
|
| 119 |
+
|
| 120 |
+
def forward(self, src, mt, ref=None):
|
| 121 |
+
# Use the same featurization as in BlaserCore
|
| 122 |
+
src = F.normalize(src) if self.norm_emb else src
|
| 123 |
+
mt = F.normalize(mt) if self.norm_emb else mt
|
| 124 |
+
ref = F.normalize(ref) if (ref is not None and self.norm_emb) else ref
|
| 125 |
+
|
| 126 |
+
if self.input_form == "COMET":
|
| 127 |
+
if ref is None:
|
| 128 |
+
raise ValueError("COMET input_form requires reference embedding")
|
| 129 |
+
proc = torch.cat(
|
| 130 |
+
[ref, mt, src * mt, ref * mt, torch.abs(mt - src), torch.abs(mt - ref)],
|
| 131 |
+
dim=-1,
|
| 132 |
+
)
|
| 133 |
+
else: # QE
|
| 134 |
+
proc = torch.cat([src, mt, src * mt, torch.abs(mt - src)], dim=-1)
|
| 135 |
+
|
| 136 |
+
return self.mlp(proc)
|