oleksiydolgykh commited on
Commit
13a5cb6
·
verified ·
1 Parent(s): 033e422

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - event-detection
6
+ - token-classification
7
+ - real-time-processing
8
+ - huggingface
9
+ - transformers
10
+ ---
11
+
12
+ # Event Message Detector
13
+
14
+ ## Model Description
15
+
16
+ The Event Message Detector is a fine-tuned token classification model based on `xlm-roberta-base`. It is designed to process real-time message streams from chat applications (e.g., Slack, IRC) to detect conversations that can be converted into calendar events. The model identifies event-related messages within a sliding window of recent messages, facilitating the extraction of meaningful interactions for scheduling purposes.
17
+
18
+ ## Intended Use
19
+
20
+ ### Direct Use
21
+
22
+ This model is intended for real-time detection of event-related conversations in multi-user chat environments. It can be integrated into chat applications to automatically identify and extract discussions pertinent to scheduling events, such as meetings or calls.
23
+
24
+ ### Downstream Use
25
+
26
+ Developers can fine-tune this model further for specific domains or integrate it into larger systems that manage event scheduling, automate calendar entries, or analyze communication patterns.
27
+
28
+ ### Out-of-Scope Use
29
+
30
+ The model is not designed for general-purpose natural language understanding tasks unrelated to event detection. It should not be used for sentiment analysis, topic modeling, or other unrelated NLP tasks without appropriate fine-tuning.
31
+
32
+ ## Model Details
33
+
34
+ - **Model Type**: Token Classification
35
+ - **Base Model**: `xlm-roberta-base` (multilingual, 277M parameters)
36
+ - **Training Data**: Labeled chat messages indicating event-related conversations
37
+ - **Training Procedure**: Fine-tuned with a sliding window of 15 messages, using weighted cross-entropy loss
38
+ - **Evaluation Metrics**: ROC-AUC, F1-Score, Precision, Recall
39
+
40
+ ## Usage
41
+
42
+ ```python
43
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
44
+ import torch
45
+
46
+ # Load model and tokenizer
47
+ model = AutoModelForTokenClassification.from_pretrained("oleksiydolgykh/event-message-detector")
48
+ tokenizer = AutoTokenizer.from_pretrained("oleksiydolgykh/event-message-detector")
49
+
50
+ # Example message
51
+ message = "[MESSAGE] [user1]: Let's have a meeting tomorrow at 10 AM."
52
+
53
+ # Tokenize input
54
+ inputs = tokenizer(message, return_tensors="pt")
55
+
56
+ # Get model predictions
57
+ with torch.no_grad():
58
+ outputs = model(**inputs)
59
+
60
+ # Process outputs
61
+ logits = outputs.logits
62
+ predictions = torch.argmax(logits, dim=-1)