Image Segmentation
ONNX
previtus commited on
Commit
e733199
·
1 Parent(s): 3136a74

model weights upload in pytorch and onnx formats

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LINKNET/CEM/.DS_Store +0 -0
  2. LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/config.yaml +167 -0
  3. LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/hydra.yaml +183 -0
  4. LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/overrides.yaml +29 -0
  5. LINKNET/CEM/LinkNet_RGB_CEM_A/final_checkpoint_model_40ep.ckpt +3 -0
  6. LINKNET/CEM/LinkNet_RGB_CEM_A/final_checkpoint_model_40ep.onnx +3 -0
  7. LINKNET/CEM/LinkNet_RGB_CEM_A/results_test_40ep.json +1 -0
  8. LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/config.yaml +167 -0
  9. LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/hydra.yaml +183 -0
  10. LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/overrides.yaml +29 -0
  11. LINKNET/CEM/LinkNet_RGB_CEM_B/final_checkpoint_model_40ep.ckpt +3 -0
  12. LINKNET/CEM/LinkNet_RGB_CEM_B/final_checkpoint_model_40ep.onnx +3 -0
  13. LINKNET/CEM/LinkNet_RGB_CEM_B/results_test_40ep.json +1 -0
  14. LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/config.yaml +167 -0
  15. LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/hydra.yaml +183 -0
  16. LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/overrides.yaml +29 -0
  17. LINKNET/CEM/LinkNet_RGB_CEM_C/final_checkpoint_model_40ep.ckpt +3 -0
  18. LINKNET/CEM/LinkNet_RGB_CEM_C/final_checkpoint_model_40ep.onnx +3 -0
  19. LINKNET/CEM/LinkNet_RGB_CEM_C/results_test_40ep.json +1 -0
  20. LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/config.yaml +167 -0
  21. LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/hydra.yaml +183 -0
  22. LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/overrides.yaml +29 -0
  23. LINKNET/CEM/LinkNet_RGB_CEM_D/final_checkpoint_model_40ep.ckpt +3 -0
  24. LINKNET/CEM/LinkNet_RGB_CEM_D/final_checkpoint_model_40ep.onnx +3 -0
  25. LINKNET/CEM/LinkNet_RGB_CEM_D/results_test_40ep.json +1 -0
  26. LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/config.yaml +167 -0
  27. LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/hydra.yaml +183 -0
  28. LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/overrides.yaml +29 -0
  29. LINKNET/CEM/LinkNet_RGB_CEM_E/final_checkpoint_model_40ep.ckpt +3 -0
  30. LINKNET/CEM/LinkNet_RGB_CEM_E/final_checkpoint_model_40ep.onnx +3 -0
  31. LINKNET/CEM/LinkNet_RGB_CEM_E/results_test_40ep.json +1 -0
  32. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/config.yaml +167 -0
  33. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/hydra.yaml +183 -0
  34. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/overrides.yaml +29 -0
  35. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/final_checkpoint_model_40ep.ckpt +3 -0
  36. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/final_checkpoint_model_40ep.onnx +3 -0
  37. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/results_test_40ep.json +1 -0
  38. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/config.yaml +167 -0
  39. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/hydra.yaml +183 -0
  40. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/overrides.yaml +29 -0
  41. LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/final_checkpoint_model_40ep.ckpt +0 -0
  42. LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/final_checkpoint_model_40ep.onnx +0 -0
  43. LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/results_test_40ep.json +0 -0
  44. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/config.yaml +167 -0
  45. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/hydra.yaml +183 -0
  46. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/overrides.yaml +29 -0
  47. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/final_checkpoint_model_40ep.ckpt +3 -0
  48. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/final_checkpoint_model_40ep.onnx +3 -0
  49. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/results_test_40ep.json +1 -0
  50. LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_D/.hydra/config.yaml +167 -0
LINKNET/CEM/.DS_Store ADDED
Binary file (8.2 kB). View file
 
LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_CEM_A
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - cem
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_cem
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,cem]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_CEM_A
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,cem],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_CEM_A,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_CEM_A
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/CEM/LinkNet_RGB_CEM_A/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,cem]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_CEM_A
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/CEM/LinkNet_RGB_CEM_A/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ed4d07a14c66854ba77f3509716b7a3b8fdfd20eb722df718d144deac5b38a
3
+ size 10591877
LINKNET/CEM/LinkNet_RGB_CEM_A/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:983240a72f36e1b74d2e86dcd94d2ef2e569658d5df1efb56baa7a927b0701ae
3
+ size 3503504
LINKNET/CEM/LinkNet_RGB_CEM_A/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.426147024268304, "auprc_easy": 0.7016938852902975, "auprc_hard": 0.46762925772752423, "precision": 0.31898900866508484, "precision_easy": 0.7068076729774475, "precision_hard": 0.2314203977584839, "recall": 0.5972452163696289, "recall_easy": 0.5731120109558105, "recall_hard": 0.6934260725975037, "f1score": 0.415864497423172, "f1score_easy": 0.6329771876335144, "f1score_hard": 0.34702613949775696, "TP": 113866, "TP_easy": 87348, "TP_hard": 26518, "TN": 89219503, "TN_easy": 7937821, "TN_hard": 35525272, "FP": 243093, "FP_easy": 36233, "FP_hard": 88070, "FN": 76786, "FN_easy": 65062, "FN_hard": 11724, "iou": 0.2625182867050171, "iou_easy": 0.4630333483219147, "iou_hard": 0.20994046330451965, "balanced_accuracy": 0.7972639799118042, "balanced_accuracy_easy": 0.7842841148376465, "balanced_accuracy_hard": 0.845476508140564, "cohen_kappa": 0.41424065828323364, "cohen_kappa_easy": 0.6267074942588806, "cohen_kappa_hard": 0.3459741473197937, "tile_FPR": 0.6800000071525574}
LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_CEM_B
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - cem
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_cem
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,cem]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_CEM_B
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,cem],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_CEM_B,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_CEM_B
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/CEM/LinkNet_RGB_CEM_B/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,cem]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_CEM_B
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/CEM/LinkNet_RGB_CEM_B/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe61719b41c176fc195cf505e33c4aec2bf04c13fb9d737a839589f3ac272a7f
3
+ size 10591877
LINKNET/CEM/LinkNet_RGB_CEM_B/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4453a12325e5d2ac955a3bcff71cd5b673ed71cdf1047621b0eee6f98eac4736
3
+ size 3503504
LINKNET/CEM/LinkNet_RGB_CEM_B/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.32507209995538044, "auprc_easy": 0.6522983024489524, "auprc_hard": 0.20613461957327928, "precision": 0.2736005187034607, "precision_easy": 0.7041550874710083, "precision_hard": 0.18294697999954224, "recall": 0.5391761064529419, "recall_easy": 0.5269404649734497, "recall_hard": 0.587939977645874, "f1score": 0.3629997670650482, "f1score_easy": 0.6027928590774536, "f1score_hard": 0.2790599465370178, "TP": 102795, "TP_easy": 80311, "TP_hard": 22484, "TN": 89189679, "TN_easy": 7940312, "TN_hard": 35512927, "FP": 272917, "FP_easy": 33742, "FP_hard": 100415, "FN": 87857, "FN_easy": 72099, "FN_hard": 15758, "iou": 0.22174692153930664, "iou_easy": 0.431427001953125, "iou_hard": 0.16215553879737854, "balanced_accuracy": 0.7680627703666687, "balanced_accuracy_easy": 0.7613545060157776, "balanced_accuracy_hard": 0.7925602197647095, "cohen_kappa": 0.3611975312232971, "cohen_kappa_easy": 0.5963116884231567, "cohen_kappa_hard": 0.2778783440589905, "tile_FPR": 0.49714285135269165}
LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_CEM_C
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - cem
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_cem
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,cem]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_CEM_C
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,cem],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_CEM_C,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_CEM_C
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/CEM/LinkNet_RGB_CEM_C/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,cem]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_CEM_C
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/CEM/LinkNet_RGB_CEM_C/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54160ce86fc58d1fd2389d89448e0fcffde495218f6d9dd706f6e08a4eaacd21
3
+ size 10591877
LINKNET/CEM/LinkNet_RGB_CEM_C/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c2aead24299cfff14e3f56542d51b824e3e15ba7d4befc129837f686e158e76
3
+ size 3503504
LINKNET/CEM/LinkNet_RGB_CEM_C/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.16035815627018224, "auprc_easy": 0.6172272024214699, "auprc_hard": 0.5200401554928316, "precision": 0.23335282504558563, "precision_easy": 0.7416125535964966, "precision_hard": 0.4092662036418915, "recall": 0.4521746337413788, "recall_easy": 0.40827372670173645, "recall_hard": 0.6271377205848694, "f1score": 0.3078395426273346, "f1score_easy": 0.5266276001930237, "f1score_hard": 0.49530163407325745, "TP": 86208, "TP_easy": 62225, "TP_hard": 23983, "TN": 89179372, "TN_easy": 7952374, "TN_hard": 35578725, "FP": 283224, "FP_easy": 21680, "FP_hard": 34617, "FN": 104444, "FN_easy": 90185, "FN_hard": 14259, "iou": 0.18192100524902344, "iou_easy": 0.3574300706386566, "iou_hard": 0.3291700482368469, "balanced_accuracy": 0.7245044708251953, "balanced_accuracy_easy": 0.7027774453163147, "balanced_accuracy_hard": 0.8130828142166138, "cohen_kappa": 0.30589228868484497, "cohen_kappa_easy": 0.5202381610870361, "cohen_kappa_hard": 0.4946455955505371, "tile_FPR": 0.49714285135269165}
LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_CEM_D
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - cem
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_cem
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,cem]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_CEM_D
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,cem],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_CEM_D,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_CEM_D
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/CEM/LinkNet_RGB_CEM_D/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,cem]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_CEM_D
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/CEM/LinkNet_RGB_CEM_D/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e170bf1d3c5e97cb103ded48410f90b1fa90a956fefbb7962fe8588f2cf7daa
3
+ size 10591877
LINKNET/CEM/LinkNet_RGB_CEM_D/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3249e151404c5f58f20141c560f0fd8dbc71f063b10442412a34760dfe71ede5
3
+ size 3503504
LINKNET/CEM/LinkNet_RGB_CEM_D/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.30514615087272895, "auprc_easy": 0.6127196774969026, "auprc_hard": 0.3317879505245254, "precision": 0.16546858847141266, "precision_easy": 0.5542868375778198, "precision_hard": 0.11491871625185013, "recall": 0.6059731841087341, "recall_easy": 0.5669247508049011, "recall_hard": 0.761597216129303, "f1score": 0.2599535882472992, "f1score_easy": 0.5605345964431763, "f1score_hard": 0.19970379769802094, "TP": 115530, "TP_easy": 86405, "TP_hard": 29125, "TN": 88879927, "TN_easy": 7904574, "TN_hard": 35389027, "FP": 582669, "FP_easy": 69480, "FP_hard": 224315, "FN": 75122, "FN_easy": 66005, "FN_hard": 9117, "iou": 0.14939463138580322, "iou_easy": 0.38940465450286865, "iou_hard": 0.11092829704284668, "balanced_accuracy": 0.799730122089386, "balanced_accuracy_easy": 0.7791057825088501, "balanced_accuracy_hard": 0.8776493072509766, "cohen_kappa": 0.2574729919433594, "cohen_kappa_easy": 0.5520384311676025, "cohen_kappa_hard": 0.19820916652679443, "tile_FPR": 0.7428571581840515}
LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_CEM_E
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - cem
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_cem
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,cem]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_CEM_E
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,cem],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_CEM_E,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_CEM_E
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/CEM/LinkNet_RGB_CEM_E/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,cem]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_CEM_E
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_cem
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/CEM/LinkNet_RGB_CEM_E/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae561622c2bb2f25722801f7f0851da6d91ee5592234dda900bfb3294dd84262
3
+ size 10591877
LINKNET/CEM/LinkNet_RGB_CEM_E/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2041a752709004c9f37237d791514c0c143585ac38292d2c14e1428c804a8f9b
3
+ size 3503504
LINKNET/CEM/LinkNet_RGB_CEM_E/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.17507702877871295, "auprc_easy": 0.5061055621446362, "auprc_hard": 0.33074220773588225, "precision": 0.14373405277729034, "precision_easy": 0.5283378958702087, "precision_hard": 0.12006955593824387, "recall": 0.4416581094264984, "recall_easy": 0.399343878030777, "recall_hard": 0.6102975606918335, "f1score": 0.21688471734523773, "f1score_easy": 0.45487257838249207, "f1score_hard": 0.20066116750240326, "TP": 84203, "TP_easy": 60864, "TP_hard": 23339, "TN": 88960974, "TN_easy": 7919719, "TN_hard": 35442302, "FP": 501622, "FP_easy": 54335, "FP_hard": 171040, "FN": 106449, "FN_easy": 91546, "FN_hard": 14903, "iou": 0.12163247168064117, "iou_easy": 0.2943916320800781, "iou_hard": 0.11151938885450363, "balanced_accuracy": 0.7180255651473999, "balanced_accuracy_easy": 0.696264922618866, "balanced_accuracy_hard": 0.8027474284172058, "cohen_kappa": 0.21436381340026855, "cohen_kappa_easy": 0.4459260106086731, "cohen_kappa_hard": 0.19922566413879395, "tile_FPR": 0.6399999856948853}
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_tileMag1c_1perc_A
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - mag1c_tile_sampled-0.01
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_mag1c_1perc
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_A
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_tileMag1c_1perc_A,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_tileMag1c_1perc_A
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_A
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc093ddc5d6830085aff28fe02ea262b0e1b052786727a95781260d76b0b0c65
3
+ size 10591941
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a85658456004d2f1db89a5c5c32bf259e7fe0a90ee5afe35970a707c6cd93203
3
+ size 3503504
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_A/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.30707565451258856, "auprc_easy": 0.6610068525311543, "auprc_hard": 0.2687316599204637, "precision": 0.3240155279636383, "precision_easy": 0.7024475932121277, "precision_hard": 0.24275700747966766, "recall": 0.5662725567817688, "recall_easy": 0.5415589809417725, "recall_hard": 0.6647664904594421, "f1score": 0.41218364238739014, "f1score_easy": 0.611599326133728, "f1score_hard": 0.3556419909000397, "TP": 107961, "TP_easy": 82539, "TP_hard": 25422, "TN": 89237360, "TN_easy": 7939091, "TN_hard": 35534042, "FP": 225236, "FP_easy": 34963, "FP_hard": 79300, "FN": 82691, "FN_easy": 69871, "FN_hard": 12820, "iou": 0.2595915198326111, "iou_easy": 0.44050636887550354, "iou_hard": 0.21628013253211975, "balanced_accuracy": 0.7818774580955505, "balanced_accuracy_easy": 0.7685872316360474, "balanced_accuracy_hard": 0.8312698602676392, "cohen_kappa": 0.41058915853500366, "cohen_kappa_easy": 0.6051517724990845, "cohen_kappa_hard": 0.354627788066864, "tile_FPR": 0.4571428596973419}
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_tileMag1c_1perc_B
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - mag1c_tile_sampled-0.01
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_mag1c_1perc
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_B
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_tileMag1c_1perc_B,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_tileMag1c_1perc_B
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_B/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_B
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/final_checkpoint_model_40ep.ckpt RENAMED
File without changes
LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/final_checkpoint_model_40ep.onnx RENAMED
File without changes
LINKNET/Mag1c-SAS/{LinkNet_RGB_tileMag1c_1perc_R3 2 → LinkNet_RGB_Mag1cSAS_B}/results_test_40ep.json RENAMED
File without changes
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_tileMag1c_1perc_C
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - mag1c_tile_sampled-0.01
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_mag1c_1perc
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/hydra.yaml ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: experiments_v2/${experiment_name}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.mode=RUN
114
+ task:
115
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
116
+ - wandb.wandb_project=Runs08_FastProds
117
+ - model.architecture=linknet
118
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
119
+ - model.positive_weight=1
120
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_C
121
+ - dataset.augment_rotation_load_surrounding_area=0.4
122
+ - dataset.normalisation.mode_input=from_data
123
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
124
+ - dataset.normalisation.max_style=max_outliers
125
+ - dataset.normalisation.max_outlier_percentile=5
126
+ - dataloader.num_workers=8
127
+ - dataloader.train_batch_size=32
128
+ - dataloader.val_batch_size=32
129
+ - training.val_check_interval=0.5
130
+ - training.max_epochs=40
131
+ - dataset.format=AVIRIS
132
+ - model.multiply_loss_by_mag1c=True
133
+ - model.weighted_random_sampler=True
134
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
135
+ - dataset.train_csv=train_valids_only.csv
136
+ - dataset.test_csv=test.csv
137
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
138
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
139
+ - dataset.tiler.tile_size=128
140
+ - dataset.tiler.tile_overlap=64
141
+ - model.lr=0.001
142
+ - model.log_train_images_every_batch_i=5000
143
+ - model.auto_continue=True
144
+ job:
145
+ name: train
146
+ chdir: true
147
+ override_dirname: dataloader.num_workers=8,dataloader.train_batch_size=32,dataloader.val_batch_size=32,dataset.augment_rotation_load_surrounding_area=0.4,dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder,dataset.format=AVIRIS,dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01],dataset.normalisation.max_outlier_percentile=5,dataset.normalisation.max_style=max_outliers,dataset.normalisation.mode_input=from_data,dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc,dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS,dataset.test_csv=test.csv,dataset.tiler.tile_overlap=64,dataset.tiler.tile_size=128,dataset.train_csv=train_valids_only.csv,experiment_name=LinkNet_RGB_tileMag1c_1perc_C,model.architecture=linknet,model.auto_continue=True,model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100,model.log_train_images_every_batch_i=5000,model.lr=0.001,model.multiply_loss_by_mag1c=True,model.positive_weight=1,model.weighted_random_sampler=True,training.max_epochs=40,training.val_check_interval=0.5,training.visualiser.bands=[first1,labelbinary,prediction,differences],wandb.wandb_project=Runs08_FastProds
148
+ id: ???
149
+ num: ???
150
+ config_name: settings
151
+ env_set: {}
152
+ env_copy: []
153
+ config:
154
+ override_dirname:
155
+ kv_sep: '='
156
+ item_sep: ','
157
+ exclude_keys: []
158
+ runtime:
159
+ version: 1.3.2
160
+ version_base: '1.3'
161
+ cwd: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models
162
+ config_sources:
163
+ - path: hydra.conf
164
+ schema: pkg
165
+ provider: hydra
166
+ - path: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/scripts
167
+ schema: file
168
+ provider: main
169
+ - path: ''
170
+ schema: structured
171
+ provider: schema
172
+ output_dir: /data/coml-gen-ae/hert6112/python_codes/hyperspectral_models/experiments_v2/LinkNet_RGB_tileMag1c_1perc_C
173
+ choices:
174
+ hydra/env: default
175
+ hydra/callbacks: null
176
+ hydra/job_logging: default
177
+ hydra/hydra_logging: default
178
+ hydra/hydra_help: default
179
+ hydra/help: default
180
+ hydra/sweeper: basic
181
+ hydra/launcher: basic
182
+ hydra/output: default
183
+ verbose: false
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/.hydra/overrides.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - dataset.input_products.specific_products=[640,550,460,mag1c_tile_sampled-0.01]
2
+ - wandb.wandb_project=Runs08_FastProds
3
+ - model.architecture=linknet
4
+ - model.hyperstarcop.backbone=timm-mobilenetv3_small_minimal_100
5
+ - model.positive_weight=1
6
+ - experiment_name=LinkNet_RGB_tileMag1c_1perc_C
7
+ - dataset.augment_rotation_load_surrounding_area=0.4
8
+ - dataset.normalisation.mode_input=from_data
9
+ - dataset.normalisation.save_load_from=normaliser_fastprods_rgb_mag1c_1perc
10
+ - dataset.normalisation.max_style=max_outliers
11
+ - dataset.normalisation.max_outlier_percentile=5
12
+ - dataloader.num_workers=8
13
+ - dataloader.train_batch_size=32
14
+ - dataloader.val_batch_size=32
15
+ - training.val_check_interval=0.5
16
+ - training.max_epochs=40
17
+ - dataset.format=AVIRIS
18
+ - model.multiply_loss_by_mag1c=True
19
+ - model.weighted_random_sampler=True
20
+ - training.visualiser.bands=[first1,labelbinary,prediction,differences]
21
+ - dataset.train_csv=train_valids_only.csv
22
+ - dataset.test_csv=test.csv
23
+ - dataset.root_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
24
+ - dataset.feature_folder=/data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
25
+ - dataset.tiler.tile_size=128
26
+ - dataset.tiler.tile_overlap=64
27
+ - model.lr=0.001
28
+ - model.log_train_images_every_batch_i=5000
29
+ - model.auto_continue=True
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/final_checkpoint_model_40ep.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd1e36a27da4bfd3bfcdaf30590b83b33d336dc585027932a78e8277ab588c6
3
+ size 10591941
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/final_checkpoint_model_40ep.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966625fcdb21a9bffca17a1d72a34cc6811411c94a1201b626d0da6ae90f65f8
3
+ size 3503504
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_C/results_test_40ep.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"auprc": 0.3190238486988567, "auprc_easy": 0.6477635285537927, "auprc_hard": 0.24779026741942256, "precision": 0.4215352535247803, "precision_easy": 0.8088091611862183, "precision_hard": 0.3399198055267334, "recall": 0.38121289014816284, "recall_easy": 0.36952298879623413, "recall_hard": 0.4278019070625305, "f1score": 0.4003613591194153, "f1score_easy": 0.5072824358940125, "f1score_hard": 0.3788308799266815, "TP": 72679, "TP_easy": 56319, "TP_hard": 16360, "TN": 89362860, "TN_easy": 7960741, "TN_hard": 35581573, "FP": 99736, "FP_easy": 13313, "FP_hard": 31769, "FN": 117973, "FN_easy": 96091, "FN_hard": 21882, "iou": 0.2502823770046234, "iou_easy": 0.3398381769657135, "iou_hard": 0.23367756605148315, "balanced_accuracy": 0.6900490522384644, "balanced_accuracy_easy": 0.6839267015457153, "balanced_accuracy_hard": 0.7134548425674438, "cohen_kappa": 0.39914780855178833, "cohen_kappa_easy": 0.5014176368713379, "cohen_kappa_hard": 0.3780874013900757, "tile_FPR": 0.23999999463558197}
LINKNET/Mag1c-SAS/LinkNet_RGB_Mag1cSAS_D/.hydra/config.yaml ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ experiment_name: LinkNet_RGB_tileMag1c_1perc_D
2
+ experiment_path: ''
3
+ seed: None
4
+ resume_from_checkpoint: false
5
+ experiment_folder: /home/vitek/Vitek/Work/hyperspectral_utils/experiments
6
+ wandb:
7
+ wandb_project: Runs08_FastProds
8
+ wandb_entity: previtus
9
+ dataloader:
10
+ train_batch_size: 32
11
+ val_batch_size: 32
12
+ num_workers: 8
13
+ dataset:
14
+ input_products:
15
+ specific_products:
16
+ - 640
17
+ - 550
18
+ - 460
19
+ - mag1c_tile_sampled-0.01
20
+ band_ranges: []
21
+ output_products:
22
+ - labelbinary
23
+ multitemporal:
24
+ enabled: false
25
+ bases:
26
+ - B
27
+ - A
28
+ multitemporal_idx_as_y: None
29
+ auxiliary_products: []
30
+ root_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/zaitra_colab/STARCOP_FAST_PRODS
31
+ train_csv: train_valids_only.csv
32
+ val_csv: ''
33
+ test_csv: test.csv
34
+ custom_csv: ''
35
+ feature_folder: /data/coml-gen-ae/hert6112/datasets/STARCOP/features_folder
36
+ tiler:
37
+ mode: regular
38
+ input_size: 512
39
+ tile_size: 128
40
+ tile_overlap: 64
41
+ train: true
42
+ test: false
43
+ val: false
44
+ emit_thr_for_valid_data_in_tile: 0.9
45
+ perpixel_how_many_from_each: 100
46
+ augment: true
47
+ augment_rotation_load_surrounding_area: 0.4
48
+ normalisation:
49
+ mode_input: from_data
50
+ save_load_from: normaliser_fastprods_rgb_mag1c_1perc
51
+ max_style: max_outliers
52
+ max_outlier_percentile: 5
53
+ override_products: []
54
+ feature_extractor: []
55
+ format: AVIRIS
56
+ num_channels: None
57
+ presave_to_scratch: false
58
+ path_to_scratch: ''
59
+ model:
60
+ architecture: linknet
61
+ num_classes: 1
62
+ optimizer: adam
63
+ lr: 0.001
64
+ loss: BCEWithLogitsLoss
65
+ task: segmentation
66
+ multiply_loss_by_mag1c: true
67
+ positive_weight: 1
68
+ weighted_random_sampler: true
69
+ extra_metrics: []
70
+ log_train_loss_every_batch_i: 100
71
+ log_train_images_every_batch_i: 5000
72
+ hyperstarcop:
73
+ backbone: timm-mobilenetv3_small_minimal_100
74
+ pretrained: None
75
+ activation: None
76
+ custom_config:
77
+ conv1x1:
78
+ encoder_stage0_replace_conv1x1: false
79
+ encoder_stage0_side_conv1x1: 0
80
+ fuse_mf:
81
+ late: false
82
+ fadein_start_epoch: None
83
+ fadein_end_epoch: None
84
+ siamese:
85
+ siamese: false
86
+ method: concat
87
+ custom_channels:
88
+ encoder: None
89
+ decoder: None
90
+ encoder_depth: None
91
+ output_bands: None
92
+ transformer:
93
+ backbone: nvidia/mit-b0
94
+ pretrained: false
95
+ custom_config:
96
+ conv1x1:
97
+ SegformerOverlapPatchEmbeddings: false
98
+ strides:
99
+ keep_default: true
100
+ strides_custom:
101
+ - 4
102
+ - 2
103
+ - 2
104
+ - 2
105
+ upscale:
106
+ preclassifier: false
107
+ decimate_channels_ratio: 2
108
+ upscale_layers: 2
109
+ loss_overrides:
110
+ multilabel_override: false
111
+ loss_override_to: BCEWithLogitsLoss
112
+ custom_config_features:
113
+ conv1x1: false
114
+ stride: false
115
+ upscale: false
116
+ efficientvit:
117
+ backbone: b1
118
+ custom_config:
119
+ conv1x1: false
120
+ head_stride: 8
121
+ upscale_layers: 0
122
+ loss_overrides:
123
+ multilabel_override: false
124
+ num_classes: 1
125
+ classical_baseline:
126
+ threshold: 500
127
+ load_path: ''
128
+ auto_continue: true
129
+ training:
130
+ accelerator: gpu
131
+ devices: 1
132
+ max_epochs: 40
133
+ finetuning: false
134
+ val_check_interval: 0.5
135
+ train_log_every_n_steps: 50
136
+ visualiser:
137
+ samples_per_batch: 4
138
+ wait_global_steps: 5
139
+ bands:
140
+ - first1
141
+ - labelbinary
142
+ - prediction
143
+ - differences
144
+ target: wandb
145
+ evaluation:
146
+ train: false
147
+ test: true
148
+ val: true
149
+ plot_save: false
150
+ plot_show: false
151
+ matched_filter:
152
+ num_iter: 30
153
+ debug:
154
+ no_normalisation: false
155
+ no_tiling: false
156
+ recalculate_normalisation: false
157
+ payload:
158
+ bands: 4
159
+ resolution: 128
160
+ batch_size: 1
161
+ device: CPU
162
+ num_images: 16
163
+ save_folder: /home/vitek/Vitek/Work/hyperspectral_models/results/timing_logs
164
+ timing_rand_data: false
165
+ timing_model_from: manual
166
+ warmup: 2
167
+ how_many: 10