| from transformers import PreTrainedModel | |
| from timm.models.resnet import BasicBlock, Bottleneck, ResNet | |
| from .configuration import ResnetConfig | |
| from transformers import PretrainedConfig | |
| import torch | |
| BLOCK_MAPPING = { | |
| "basic": BasicBlock, | |
| "bottleneck": Bottleneck, | |
| } | |
| class ResnetModel(PreTrainedModel): | |
| config_class = ResnetConfig | |
| def __init__(self, config: ResnetConfig): | |
| super().__init__(config) | |
| block_layer = BLOCK_MAPPING[config.block_type] | |
| self.model = ResNet( | |
| block_layer, | |
| config.layers, | |
| num_classes=config.num_classes, | |
| in_chans=config.input_channels, | |
| cardinality=config.cardinality, | |
| base_width=config.base_width, | |
| stem_width=config.stem_width, | |
| stem_type=config.stem_type, | |
| avg_down=config.avg_down, | |
| ) | |
| def forward(self, inputs): | |
| return self.model.forward_features(inputs) | |
| class ResnetModelForImageClassification(PreTrainedModel): | |
| config_class = ResnetConfig | |
| def __init__(self, config: ResnetConfig): | |
| super().__init__(config) | |
| block_layer = BLOCK_MAPPING[config.block_type] | |
| self.model = ResNet( | |
| block_layer, | |
| config.layers, | |
| num_classes=config.num_classes, | |
| in_chans=config.input_channels, | |
| cardinality=config.cardinality, | |
| base_width=config.base_width, | |
| stem_width=config.stem_width, | |
| stem_type=config.stem_type, | |
| avg_down=config.avg_down, | |
| ) | |
| def forward(self, tensor, labels=None): | |
| logits = self.model(tensor) | |
| if labels is not None: | |
| loss = torch.nn.functional.cross_entropy(logits, labels) | |
| return {"loss": loss, "logits": logits} | |
| return {"logits": logits} | |
| from transformers import AutoConfig, AutoModel, AutoModelForImageClassification | |
| AutoConfig.register("custom_resnet50d", ResnetConfig) | |
| AutoModel.register(ResnetConfig, ResnetModel) | |
| AutoModelForImageClassification.register( | |
| ResnetConfig, ResnetModelForImageClassification | |
| ) | |
| ResnetConfig.register_for_auto_class() | |
| ResnetModel.register_for_auto_class("AutoModel") | |
| ResnetModelForImageClassification.register_for_auto_class( | |
| "AutoModelForImageClassification" | |
| ) | |
| __all__ = [ | |
| "ResnetModel", | |
| "ResnetModelForImageClassification", | |
| ] | |