from transformers import PretrainedConfig class ResnetConfig(PretrainedConfig): model_type = "custom_resnet50d" def __init__( self, block_type="bottleneck", layers: list[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError( f"block_type should be either 'basic' or 'bottleneck', but is {block_type}" ) if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError( f"stem_type should be either '', 'deep' or 'deep-tiered', but is {stem_type}" ) self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) __all__ = [ "ResnetConfig", ] if __name__ == "__main__": resnet50d_config = ResnetConfig( block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True ) print(resnet50d_config) resnet50d_config.save_pretrained("resnet50d_config")