from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration import ResnetConfig from transformers import PretrainedConfig import torch BLOCK_MAPPING = { "basic": BasicBlock, "bottleneck": Bottleneck, } class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config: ResnetConfig): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, inputs): return self.model.forward_features(inputs) class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config: ResnetConfig): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.functional.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} from transformers import AutoConfig, AutoModel, AutoModelForImageClassification AutoConfig.register("custom_resnet50d", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register( ResnetConfig, ResnetModelForImageClassification ) ResnetConfig.register_for_auto_class() ResnetModel.register_for_auto_class("AutoModel") ResnetModelForImageClassification.register_for_auto_class( "AutoModelForImageClassification" ) __all__ = [ "ResnetModel", "ResnetModelForImageClassification", ]