Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers.js
|
3 |
+
tags:
|
4 |
+
- background-removal
|
5 |
+
- mask-generation
|
6 |
+
- Dichotomous Image Segmentation
|
7 |
+
- Camouflaged Object Detection
|
8 |
+
- Salient Object Detection
|
9 |
+
repo_url: https://github.com/ZhengPeng7/BiRefNet
|
10 |
+
pipeline_tag: image-segmentation
|
11 |
+
license: mit
|
12 |
+
base_model:
|
13 |
+
- ZhengPeng7/BiRefNet-DIS5K-TR_TEs
|
14 |
+
---
|
15 |
+
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
16 |
+
|
17 |
+
<div align='center'>
|
18 |
+
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
19 |
+
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
20 |
+
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
|
21 |
+
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
|
22 |
+
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
|
23 |
+
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
|
24 |
+
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
|
25 |
+
</div>
|
26 |
+
|
27 |
+
<div align='center'>
|
28 |
+
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento 
|
29 |
+
</div>
|
30 |
+
|
31 |
+
| *DIS-Sample_1* | *DIS-Sample_2* |
|
32 |
+
| :------------------------------: | :-------------------------------: |
|
33 |
+
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
|
34 |
+
|
35 |
+
For more information, check out the official [repository](https://github.com/ZhengPeng7/BiRefNet).
|
36 |
+
|
37 |
+
## Usage (Transformers.js)
|
38 |
+
|
39 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
40 |
+
```bash
|
41 |
+
npm i @huggingface/transformers
|
42 |
+
```
|
43 |
+
|
44 |
+
You can then use the model for image matting, as follows:
|
45 |
+
|
46 |
+
```js
|
47 |
+
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers';
|
48 |
+
|
49 |
+
// Load model and processor
|
50 |
+
const model_id = 'onnx-community/BiRefNet-DIS5K-TR_TEs-ONNX';
|
51 |
+
const model = await AutoModel.from_pretrained(model_id, { dtype: 'fp32' });
|
52 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
53 |
+
|
54 |
+
// Load image from URL
|
55 |
+
const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024';
|
56 |
+
const image = await RawImage.fromURL(url);
|
57 |
+
|
58 |
+
// Pre-process image
|
59 |
+
const { pixel_values } = await processor(image);
|
60 |
+
|
61 |
+
// Predict alpha matte
|
62 |
+
const { output_image } = await model({ input_image: pixel_values });
|
63 |
+
|
64 |
+
// Save output mask
|
65 |
+
const mask = await RawImage.fromTensor(output_image[0].sigmoid().mul(255).to('uint8')).resize(image.width, image.height);
|
66 |
+
mask.save('mask.png');
|
67 |
+
```
|
68 |
+
|
69 |
+
| Input image | Output mask |
|
70 |
+
|--------|--------|
|
71 |
+
|  |  |
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
|
75 |
+
```
|
76 |
+
@article{BiRefNet,
|
77 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
78 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
79 |
+
journal={CAAI Artificial Intelligence Research},
|
80 |
+
year={2024}
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
---
|
85 |
+
|
86 |
+
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|