|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import torch | 
					
						
						|  | import glob | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import gc | 
					
						
						|  | import json | 
					
						
						|  | import numpy as np | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | from collections import OrderedDict | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils import logger | 
					
						
						|  | from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, | 
					
						
						|  | FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, | 
					
						
						|  | FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class zero_model_state: | 
					
						
						|  | buffers: dict() | 
					
						
						|  | param_shapes: dict() | 
					
						
						|  | shared_params: list | 
					
						
						|  | ds_version: int | 
					
						
						|  | frozen_param_shapes: dict() | 
					
						
						|  | frozen_param_fragments: dict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | debug = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = torch.device('cpu') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def atoi(text): | 
					
						
						|  | return int(text) if text.isdigit() else text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def natural_keys(text): | 
					
						
						|  | ''' | 
					
						
						|  | alist.sort(key=natural_keys) sorts in human order | 
					
						
						|  | http://nedbatchelder.com/blog/200712/human_sorting.html | 
					
						
						|  | (See Toothy's implementation in the comments) | 
					
						
						|  | ''' | 
					
						
						|  | return [atoi(c) for c in re.split(r'(\d+)', text)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_state_file(checkpoint_dir, zero_stage): | 
					
						
						|  | if not os.path.isdir(checkpoint_dir): | 
					
						
						|  | raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if zero_stage <= 2: | 
					
						
						|  | file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(file): | 
					
						
						|  | raise FileNotFoundError(f"can't find model states file at '{file}'") | 
					
						
						|  |  | 
					
						
						|  | return file | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_checkpoint_files(checkpoint_dir, glob_pattern): | 
					
						
						|  |  | 
					
						
						|  | ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) | 
					
						
						|  |  | 
					
						
						|  | if len(ckpt_files) == 0: | 
					
						
						|  | raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") | 
					
						
						|  |  | 
					
						
						|  | return ckpt_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_optim_files(checkpoint_dir): | 
					
						
						|  | return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_state_files(checkpoint_dir): | 
					
						
						|  | return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_model_states(files): | 
					
						
						|  | zero_model_states = [] | 
					
						
						|  | for file in files: | 
					
						
						|  | state_dict = torch.load(file, map_location=device, weights_only=False) | 
					
						
						|  |  | 
					
						
						|  | if BUFFER_NAMES not in state_dict: | 
					
						
						|  | raise ValueError(f"{file} is not a model state checkpoint") | 
					
						
						|  | buffer_names = state_dict[BUFFER_NAMES] | 
					
						
						|  | if debug: | 
					
						
						|  | print("Found buffers:", buffer_names) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} | 
					
						
						|  | param_shapes = state_dict[PARAM_SHAPES] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | param_names = [] | 
					
						
						|  | for s in param_shapes: | 
					
						
						|  | for name in s.keys(): | 
					
						
						|  | param_names.append(name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) | 
					
						
						|  | if frozen_param_shapes is not None: | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"Found frozen_param_shapes: {frozen_param_shapes}") | 
					
						
						|  | param_names += list(frozen_param_shapes.keys()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] | 
					
						
						|  |  | 
					
						
						|  | ds_version = state_dict.get(DS_VERSION, None) | 
					
						
						|  |  | 
					
						
						|  | frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) | 
					
						
						|  |  | 
					
						
						|  | z_model_state = zero_model_state(buffers=buffers, | 
					
						
						|  | param_shapes=param_shapes, | 
					
						
						|  | shared_params=shared_params, | 
					
						
						|  | ds_version=ds_version, | 
					
						
						|  | frozen_param_shapes=frozen_param_shapes, | 
					
						
						|  | frozen_param_fragments=frozen_param_fragments) | 
					
						
						|  | zero_model_states.append(z_model_state) | 
					
						
						|  |  | 
					
						
						|  | return zero_model_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def parse_optim_states(files, ds_checkpoint_dir): | 
					
						
						|  | total_files = len(files) | 
					
						
						|  | state_dicts = [] | 
					
						
						|  | for f in tqdm(files, desc='Loading checkpoint shards'): | 
					
						
						|  | state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) | 
					
						
						|  | state_dicts.append(state_dict) | 
					
						
						|  |  | 
					
						
						|  | if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: | 
					
						
						|  | raise ValueError(f"{files[0]} is not a zero checkpoint") | 
					
						
						|  | zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] | 
					
						
						|  | world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if type(world_size) is list: | 
					
						
						|  | world_size = max(world_size) | 
					
						
						|  |  | 
					
						
						|  | if world_size != total_files: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " | 
					
						
						|  | "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if zero_stage <= 2: | 
					
						
						|  | fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | fp32_groups_key = FP32_FLAT_GROUPS | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"unknown zero stage {zero_stage}") | 
					
						
						|  |  | 
					
						
						|  | fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] | 
					
						
						|  | return zero_stage, world_size, fp32_flat_groups | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): | 
					
						
						|  | """ | 
					
						
						|  | Returns fp32 state_dict reconstructed from ds checkpoint | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") | 
					
						
						|  |  | 
					
						
						|  | optim_files = get_optim_files(ds_checkpoint_dir) | 
					
						
						|  | zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) | 
					
						
						|  | print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") | 
					
						
						|  |  | 
					
						
						|  | model_files = get_model_state_files(ds_checkpoint_dir) | 
					
						
						|  |  | 
					
						
						|  | zero_model_states = parse_model_states(model_files) | 
					
						
						|  | print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') | 
					
						
						|  |  | 
					
						
						|  | if zero_stage <= 2: | 
					
						
						|  | return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
						
						|  | exclude_frozen_parameters) | 
					
						
						|  | elif zero_stage == 3: | 
					
						
						|  | return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
						
						|  | exclude_frozen_parameters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _zero2_merge_frozen_params(state_dict, zero_model_states): | 
					
						
						|  | if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | frozen_param_shapes = zero_model_states[0].frozen_param_shapes | 
					
						
						|  | frozen_param_fragments = zero_model_states[0].frozen_param_fragments | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | num_elem = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
						
						|  | print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | 
					
						
						|  |  | 
					
						
						|  | wanted_params = len(frozen_param_shapes) | 
					
						
						|  | wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
						
						|  | avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) | 
					
						
						|  | print(f'Frozen params: Have {avail_numel} numels to process.') | 
					
						
						|  | print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | 
					
						
						|  |  | 
					
						
						|  | total_params = 0 | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | for name, shape in frozen_param_shapes.items(): | 
					
						
						|  | total_params += 1 | 
					
						
						|  | unpartitioned_numel = shape.numel() | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  |  | 
					
						
						|  | state_dict[name] = frozen_param_fragments[name] | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | 
					
						
						|  |  | 
					
						
						|  | print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _has_callable(obj, fn): | 
					
						
						|  | attr = getattr(obj, fn, None) | 
					
						
						|  | return callable(attr) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | 
					
						
						|  | param_shapes = zero_model_states[0].param_shapes | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | for i in range(world_size): | 
					
						
						|  | for j in range(len(fp32_flat_groups[0])): | 
					
						
						|  | print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_param_groups = len(fp32_flat_groups[0]) | 
					
						
						|  | merged_single_partition_of_fp32_groups = [] | 
					
						
						|  | for i in range(num_param_groups): | 
					
						
						|  | merged_partitions = [sd[i] for sd in fp32_flat_groups] | 
					
						
						|  | full_single_fp32_vector = torch.cat(merged_partitions, 0) | 
					
						
						|  | merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) | 
					
						
						|  | avail_numel = sum( | 
					
						
						|  | [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | wanted_params = sum([len(shapes) for shapes in param_shapes]) | 
					
						
						|  | wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) | 
					
						
						|  |  | 
					
						
						|  | print(f"Have {avail_numel} numels to process.") | 
					
						
						|  | print(f"Need {wanted_numel} numels in {wanted_params} params.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | total_params = 0 | 
					
						
						|  | for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): | 
					
						
						|  | offset = 0 | 
					
						
						|  | avail_numel = full_single_fp32_vector.numel() | 
					
						
						|  | for name, shape in shapes.items(): | 
					
						
						|  |  | 
					
						
						|  | unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  | total_params += 1 | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | 
					
						
						|  | state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) | 
					
						
						|  | offset += unpartitioned_numel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | align_to = 2 * world_size | 
					
						
						|  |  | 
					
						
						|  | def zero2_align(x): | 
					
						
						|  | return align_to * math.ceil(x / align_to) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"original offset={offset}, avail_numel={avail_numel}") | 
					
						
						|  |  | 
					
						
						|  | offset = zero2_align(offset) | 
					
						
						|  | avail_numel = zero2_align(avail_numel) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"aligned  offset={offset}, avail_numel={avail_numel}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if offset != avail_numel: | 
					
						
						|  | raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
						
						|  |  | 
					
						
						|  | print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
						
						|  | exclude_frozen_parameters): | 
					
						
						|  | state_dict = OrderedDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buffers = zero_model_states[0].buffers | 
					
						
						|  | state_dict.update(buffers) | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"added {len(buffers)} buffers") | 
					
						
						|  |  | 
					
						
						|  | if not exclude_frozen_parameters: | 
					
						
						|  | _zero2_merge_frozen_params(state_dict, zero_model_states) | 
					
						
						|  |  | 
					
						
						|  | _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for pair in zero_model_states[0].shared_params: | 
					
						
						|  | if pair[1] in state_dict: | 
					
						
						|  | state_dict[pair[0]] = state_dict[pair[1]] | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def zero3_partitioned_param_info(unpartitioned_numel, world_size): | 
					
						
						|  | remainder = unpartitioned_numel % world_size | 
					
						
						|  | padding_numel = (world_size - remainder) if remainder else 0 | 
					
						
						|  | partitioned_numel = math.ceil(unpartitioned_numel / world_size) | 
					
						
						|  | return partitioned_numel, padding_numel | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): | 
					
						
						|  | if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | for i in range(world_size): | 
					
						
						|  | num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) | 
					
						
						|  | print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | 
					
						
						|  |  | 
					
						
						|  | frozen_param_shapes = zero_model_states[0].frozen_param_shapes | 
					
						
						|  | wanted_params = len(frozen_param_shapes) | 
					
						
						|  | wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
						
						|  | avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size | 
					
						
						|  | print(f'Frozen params: Have {avail_numel} numels to process.') | 
					
						
						|  | print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | 
					
						
						|  |  | 
					
						
						|  | total_params = 0 | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | for name, shape in zero_model_states[0].frozen_param_shapes.items(): | 
					
						
						|  | total_params += 1 | 
					
						
						|  | unpartitioned_numel = shape.numel() | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  |  | 
					
						
						|  | param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) | 
					
						
						|  | state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) | 
					
						
						|  |  | 
					
						
						|  | partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print( | 
					
						
						|  | f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GatheredTensor: | 
					
						
						|  | """ | 
					
						
						|  | A pseudo tensor that collects partitioned weights. | 
					
						
						|  | It is more memory efficient when there are multiple groups. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): | 
					
						
						|  | self.flat_groups = flat_groups | 
					
						
						|  | self.flat_groups_offset = flat_groups_offset | 
					
						
						|  | self.offset = offset | 
					
						
						|  | self.partitioned_numel = partitioned_numel | 
					
						
						|  | self.shape = shape | 
					
						
						|  | self.dtype = self.flat_groups[0][0].dtype | 
					
						
						|  |  | 
					
						
						|  | def contiguous(self): | 
					
						
						|  | """ | 
					
						
						|  | Merge partitioned weights from flat_groups into a single tensor. | 
					
						
						|  | """ | 
					
						
						|  | end_idx = self.offset + self.partitioned_numel | 
					
						
						|  | world_size = len(self.flat_groups) | 
					
						
						|  | pad_flat_param_chunks = [] | 
					
						
						|  |  | 
					
						
						|  | for rank_i in range(world_size): | 
					
						
						|  |  | 
					
						
						|  | flat_groups_at_rank_i = self.flat_groups[rank_i] | 
					
						
						|  | start_group_id = None | 
					
						
						|  | end_group_id = None | 
					
						
						|  | for group_id in range(len(self.flat_groups_offset)): | 
					
						
						|  | if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: | 
					
						
						|  | start_group_id = group_id | 
					
						
						|  | if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: | 
					
						
						|  | end_group_id = group_id | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | for group_id in range(start_group_id, end_group_id + 1): | 
					
						
						|  | flat_tensor = flat_groups_at_rank_i[group_id] | 
					
						
						|  | start_offset = self.offset - self.flat_groups_offset[group_id] | 
					
						
						|  | end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] | 
					
						
						|  | pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) | 
					
						
						|  | param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() | 
					
						
						|  | return param | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | 
					
						
						|  | param_shapes = zero_model_states[0].param_shapes | 
					
						
						|  | avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | param_shapes = {k: v for d in param_shapes for k, v in d.items()} | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | for i in range(world_size): | 
					
						
						|  | print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") | 
					
						
						|  |  | 
					
						
						|  | wanted_params = len(param_shapes) | 
					
						
						|  | wanted_numel = sum(shape.numel() for shape in param_shapes.values()) | 
					
						
						|  |  | 
					
						
						|  | avail_numel = fp32_flat_groups[0].numel() * world_size | 
					
						
						|  | print(f"Trainable params: Have {avail_numel} numels to process.") | 
					
						
						|  | print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | offset = 0 | 
					
						
						|  | total_numel = 0 | 
					
						
						|  | total_params = 0 | 
					
						
						|  | flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) | 
					
						
						|  | for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): | 
					
						
						|  | unpartitioned_numel = shape.numel() | 
					
						
						|  | total_numel += unpartitioned_numel | 
					
						
						|  | total_params += 1 | 
					
						
						|  | partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | 
					
						
						|  |  | 
					
						
						|  | if debug: | 
					
						
						|  | print( | 
					
						
						|  | f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) | 
					
						
						|  | state_dict[name] = tensor | 
					
						
						|  | offset += partitioned_numel | 
					
						
						|  |  | 
					
						
						|  | offset *= world_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if offset != avail_numel: | 
					
						
						|  | raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
						
						|  |  | 
					
						
						|  | print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
						
						|  | exclude_frozen_parameters): | 
					
						
						|  | state_dict = OrderedDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | buffers = zero_model_states[0].buffers | 
					
						
						|  | state_dict.update(buffers) | 
					
						
						|  | if debug: | 
					
						
						|  | print(f"added {len(buffers)} buffers") | 
					
						
						|  |  | 
					
						
						|  | if not exclude_frozen_parameters: | 
					
						
						|  | _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) | 
					
						
						|  |  | 
					
						
						|  | _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for pair in zero_model_states[0].shared_params: | 
					
						
						|  | if pair[1] in state_dict: | 
					
						
						|  | state_dict[pair[0]] = state_dict[pair[1]] | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def to_torch_tensor(state_dict, return_empty_tensor=False): | 
					
						
						|  | """ | 
					
						
						|  | Convert state_dict of GatheredTensor to torch tensor | 
					
						
						|  | """ | 
					
						
						|  | torch_state_dict = {} | 
					
						
						|  | converted_tensors = {} | 
					
						
						|  | for name, tensor in state_dict.items(): | 
					
						
						|  | tensor_id = id(tensor) | 
					
						
						|  | if tensor_id in converted_tensors: | 
					
						
						|  | shared_tensor = torch_state_dict[converted_tensors[tensor_id]] | 
					
						
						|  | torch_state_dict[name] = shared_tensor | 
					
						
						|  | else: | 
					
						
						|  | converted_tensors[tensor_id] = name | 
					
						
						|  | if return_empty_tensor: | 
					
						
						|  | torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) | 
					
						
						|  | else: | 
					
						
						|  | torch_state_dict[name] = tensor.contiguous() | 
					
						
						|  | return torch_state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, | 
					
						
						|  | tag=None, | 
					
						
						|  | exclude_frozen_parameters=False, | 
					
						
						|  | lazy_mode=False): | 
					
						
						|  | """ | 
					
						
						|  | Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with | 
					
						
						|  | ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example | 
					
						
						|  | via a model hub. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` | 
					
						
						|  | - ``exclude_frozen_parameters``: exclude frozen parameters | 
					
						
						|  | - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. | 
					
						
						|  | Convert the pesduo tensor to torch tensor by ``.contiguous()`` | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - pytorch ``state_dict`` | 
					
						
						|  |  | 
					
						
						|  | A typical usage might be :: | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | 
					
						
						|  | # do the training and checkpoint saving | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu | 
					
						
						|  | model = model.cpu() # move to cpu | 
					
						
						|  | model.load_state_dict(state_dict) | 
					
						
						|  | # submit to model hub or save the model to share with others | 
					
						
						|  |  | 
					
						
						|  | In this example the ``model`` will no longer be usable in the deepspeed context of the same | 
					
						
						|  | application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
						
						|  | ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
						
						|  |  | 
					
						
						|  | If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. | 
					
						
						|  |  | 
					
						
						|  | Note: the above usage may not work if your application doesn't have sufficient free CPU memory. | 
					
						
						|  | You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with | 
					
						
						|  | the checkpoint. Or you can load state_dict in lazy mode :: | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu | 
					
						
						|  | for name, lazy_tensor in state_dict.item(): | 
					
						
						|  | tensor = lazy_tensor.contiguous()  # to cpu | 
					
						
						|  | print(name, tensor) | 
					
						
						|  | # del tensor to release memory if it no longer in use | 
					
						
						|  | """ | 
					
						
						|  | if tag is None: | 
					
						
						|  | latest_path = os.path.join(checkpoint_dir, 'latest') | 
					
						
						|  | if os.path.isfile(latest_path): | 
					
						
						|  | with open(latest_path, 'r') as fd: | 
					
						
						|  | tag = fd.read().strip() | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unable to find 'latest' file at {latest_path}") | 
					
						
						|  |  | 
					
						
						|  | ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isdir(ds_checkpoint_dir): | 
					
						
						|  | raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") | 
					
						
						|  |  | 
					
						
						|  | state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) | 
					
						
						|  | if lazy_mode: | 
					
						
						|  | return state_dict | 
					
						
						|  | else: | 
					
						
						|  | return to_torch_tensor(state_dict) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, | 
					
						
						|  | output_dir, | 
					
						
						|  | max_shard_size="5GB", | 
					
						
						|  | safe_serialization=False, | 
					
						
						|  | tag=None, | 
					
						
						|  | exclude_frozen_parameters=False): | 
					
						
						|  | """ | 
					
						
						|  | Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be | 
					
						
						|  | loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
						
						|  | - ``output_dir``: directory to the pytorch fp32 state_dict output files | 
					
						
						|  | - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB | 
					
						
						|  | - ``safe_serialization``:  whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
						
						|  | - ``exclude_frozen_parameters``: exclude frozen parameters | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if safe_serialization: | 
					
						
						|  | try: | 
					
						
						|  | from safetensors.torch import save_file | 
					
						
						|  | except ImportError: | 
					
						
						|  | print('If you want to use `safe_serialization`, please `pip install safetensors`') | 
					
						
						|  | raise | 
					
						
						|  | if max_shard_size is not None: | 
					
						
						|  | try: | 
					
						
						|  | from huggingface_hub import split_torch_state_dict_into_shards | 
					
						
						|  | except ImportError: | 
					
						
						|  | print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') | 
					
						
						|  | raise | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, | 
					
						
						|  | tag, | 
					
						
						|  | exclude_frozen_parameters, | 
					
						
						|  | lazy_mode=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" | 
					
						
						|  | if max_shard_size is not None: | 
					
						
						|  | filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") | 
					
						
						|  |  | 
					
						
						|  | empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) | 
					
						
						|  | state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, | 
					
						
						|  | filename_pattern=filename_pattern, | 
					
						
						|  | max_shard_size=max_shard_size) | 
					
						
						|  | else: | 
					
						
						|  | from collections import namedtuple | 
					
						
						|  | StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) | 
					
						
						|  | state_dict_split = StateDictSplit(is_sharded=False, | 
					
						
						|  | filename_to_tensors={weights_name: list(state_dict.keys())}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(output_dir, exist_ok=True) | 
					
						
						|  | filename_to_tensors = state_dict_split.filename_to_tensors.items() | 
					
						
						|  | for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): | 
					
						
						|  | shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} | 
					
						
						|  | shard_state_dict = to_torch_tensor(shard_state_dict) | 
					
						
						|  | output_path = os.path.join(output_dir, shard_file) | 
					
						
						|  | if safe_serialization: | 
					
						
						|  | save_file(shard_state_dict, output_path, metadata={"format": "pt"}) | 
					
						
						|  | else: | 
					
						
						|  | torch.save(shard_state_dict, output_path) | 
					
						
						|  |  | 
					
						
						|  | for tensor_name in list(shard_state_dict.keys()): | 
					
						
						|  | del state_dict[tensor_name] | 
					
						
						|  | del shard_state_dict[tensor_name] | 
					
						
						|  | del shard_state_dict | 
					
						
						|  | gc.collect() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if state_dict_split.is_sharded: | 
					
						
						|  | index = { | 
					
						
						|  | "metadata": state_dict_split.metadata, | 
					
						
						|  | "weight_map": state_dict_split.tensor_to_filename, | 
					
						
						|  | } | 
					
						
						|  | save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" | 
					
						
						|  | save_index_file = os.path.join(output_dir, save_index_file) | 
					
						
						|  | with open(save_index_file, "w", encoding="utf-8") as f: | 
					
						
						|  | content = json.dumps(index, indent=2, sort_keys=True) + "\n" | 
					
						
						|  | f.write(content) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): | 
					
						
						|  | """ | 
					
						
						|  | 1. Put the provided model to cpu | 
					
						
						|  | 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` | 
					
						
						|  | 3. Load it into the provided model | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | - ``model``: the model object to update | 
					
						
						|  | - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
						
						|  | - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | - ``model`: modified model | 
					
						
						|  |  | 
					
						
						|  | Make sure you have plenty of CPU memory available before you call this function. If you don't | 
					
						
						|  | have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it | 
					
						
						|  | conveniently placed for you in the checkpoint folder. | 
					
						
						|  |  | 
					
						
						|  | A typical usage might be :: | 
					
						
						|  |  | 
					
						
						|  | from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | 
					
						
						|  | model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | 
					
						
						|  | # submit to model hub or save the model to share with others | 
					
						
						|  |  | 
					
						
						|  | Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context | 
					
						
						|  | of the same application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
						
						|  | ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | logger.info(f"Extracting fp32 weights") | 
					
						
						|  | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Overwriting model with fp32 weights") | 
					
						
						|  | model = model.cpu() | 
					
						
						|  | model.load_state_dict(state_dict, strict=False) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument("checkpoint_dir", | 
					
						
						|  | type=str, | 
					
						
						|  | help="path to the desired checkpoint folder, e.g., path/checkpoint-12") | 
					
						
						|  | parser.add_argument("output_dir", | 
					
						
						|  | type=str, | 
					
						
						|  | help="directory to the pytorch fp32 state_dict output files" | 
					
						
						|  | "(e.g. path/checkpoint-12-output/)") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max_shard_size", | 
					
						
						|  | type=str, | 
					
						
						|  | default="5GB", | 
					
						
						|  | help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" | 
					
						
						|  | "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" | 
					
						
						|  | "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" | 
					
						
						|  | "without CPU OOM issues.") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--safe_serialization", | 
					
						
						|  | default=False, | 
					
						
						|  | action='store_true', | 
					
						
						|  | help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") | 
					
						
						|  | parser.add_argument("-t", | 
					
						
						|  | "--tag", | 
					
						
						|  | type=str, | 
					
						
						|  | default=None, | 
					
						
						|  | help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") | 
					
						
						|  | parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") | 
					
						
						|  | parser.add_argument("-d", "--debug", action='store_true', help="enable debug") | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | debug = args.debug | 
					
						
						|  |  | 
					
						
						|  | convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, | 
					
						
						|  | args.output_dir, | 
					
						
						|  | max_shard_size=args.max_shard_size, | 
					
						
						|  | safe_serialization=args.safe_serialization, | 
					
						
						|  | tag=args.tag, | 
					
						
						|  | exclude_frozen_parameters=args.exclude_frozen_parameters) | 
					
						
						|  |  |