Upload folder using huggingface_hub
Browse files- config.json +37 -0
- configuration_opensci.py +204 -0
- model.safetensors +3 -0
- modeling_opensci.py +985 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/leonardo/home/userexternal/tcarsten/work/converted_checkpoints/open-sci-ref_model-0.13b_data-HPLT-2.0_tokenizer-GPT-NeoX_samples-300B_global_bs-1008_context-4096_schedule-WSD_lr-4e-3_warmup-25000_machine-LEONARDO_14497644/hf/iter_0072661",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "OpenSciForCausalLM"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_bias": true,
         | 
| 7 | 
            +
              "attention_dropout": 0.1,
         | 
| 8 | 
            +
              "auto_map": {
         | 
| 9 | 
            +
                "AutoConfig": "configuration_opensci.OpensciConfig",
         | 
| 10 | 
            +
                "AutoModel": "modeling_opensci.OpensciPreTrainedModel",
         | 
| 11 | 
            +
                "AutoModelForCausalLM": "modeling_opensci.OpensciForCausalLM"
         | 
| 12 | 
            +
              },
         | 
| 13 | 
            +
              "bos_token_id": 0,
         | 
| 14 | 
            +
              "eos_token_id": 0,
         | 
| 15 | 
            +
              "head_dim": 64,
         | 
| 16 | 
            +
              "hidden_act": "silu",
         | 
| 17 | 
            +
              "hidden_size": 512,
         | 
| 18 | 
            +
              "initializer_range": 0.02,
         | 
| 19 | 
            +
              "intermediate_size": 2256,
         | 
| 20 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 21 | 
            +
              "max_position_embeddings": 4096,
         | 
| 22 | 
            +
              "mlp_bias": true,
         | 
| 23 | 
            +
              "model_type": "opensci",
         | 
| 24 | 
            +
              "num_attention_heads": 8,
         | 
| 25 | 
            +
              "num_hidden_layers": 22,
         | 
| 26 | 
            +
              "num_key_value_heads": 8,
         | 
| 27 | 
            +
              "pretraining_tp": 1,
         | 
| 28 | 
            +
              "qk_layernorm": true,
         | 
| 29 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 30 | 
            +
              "rope_scaling": null,
         | 
| 31 | 
            +
              "rope_theta": 10000,
         | 
| 32 | 
            +
              "tie_word_embeddings": true,
         | 
| 33 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 34 | 
            +
              "transformers_version": "4.49.0",
         | 
| 35 | 
            +
              "use_cache": true,
         | 
| 36 | 
            +
              "vocab_size": 50304
         | 
| 37 | 
            +
            }
         | 
    	
        configuration_opensci.py
    ADDED
    
    | @@ -0,0 +1,204 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """OpenSci model configuration"""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 23 | 
            +
            from transformers.modeling_rope_utils import rope_config_validation
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class OpensciConfig(PretrainedConfig):
         | 
| 27 | 
            +
                r"""
         | 
| 28 | 
            +
                This is the configuration class to store the configuration of a [`OpensciModel`]. It is used to instantiate an Opensci
         | 
| 29 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 30 | 
            +
                defaults will yield a similar configuration to that of the Opensci-7B.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 33 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
                Args:
         | 
| 37 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 38 | 
            +
                        Vocabulary size of the Opensci model. Defines the number of different tokens that can be represented by the
         | 
| 39 | 
            +
                        `inputs_ids` passed when calling [`OpensciModel`]
         | 
| 40 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 41 | 
            +
                        Dimension of the hidden representations.
         | 
| 42 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 43 | 
            +
                        Dimension of the MLP representations.
         | 
| 44 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 45 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 46 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 47 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 48 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 49 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 50 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 51 | 
            +
                        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 52 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 53 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 54 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 55 | 
            +
                        `num_attention_heads`.
         | 
| 56 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 57 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 58 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 59 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 60 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 61 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         | 
| 62 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 63 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 64 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 65 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 66 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 67 | 
            +
                        Padding token id.
         | 
| 68 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 69 | 
            +
                        Beginning of stream token id.
         | 
| 70 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 71 | 
            +
                        End of stream token id.
         | 
| 72 | 
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         | 
| 73 | 
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         | 
| 74 | 
            +
                        document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
         | 
| 75 | 
            +
                        understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
         | 
| 76 | 
            +
                        results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
         | 
| 77 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 78 | 
            +
                        Whether to tie weight embeddings
         | 
| 79 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 80 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 81 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 82 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
         | 
| 83 | 
            +
                        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
         | 
| 84 | 
            +
                        accordingly.
         | 
| 85 | 
            +
                        Expected contents:
         | 
| 86 | 
            +
                            `rope_type` (`str`):
         | 
| 87 | 
            +
                                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
         | 
| 88 | 
            +
                                'Llama3'], with 'default' being the original RoPE implementation.
         | 
| 89 | 
            +
                            `factor` (`float`, *optional*):
         | 
| 90 | 
            +
                                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
         | 
| 91 | 
            +
                                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
         | 
| 92 | 
            +
                                original maximum pre-trained length.
         | 
| 93 | 
            +
                            `original_max_position_embeddings` (`int`, *optional*):
         | 
| 94 | 
            +
                                Used with 'dynamic', 'longrope' and 'Llama3'. The original max position embeddings used during
         | 
| 95 | 
            +
                                pretraining.
         | 
| 96 | 
            +
                            `attention_factor` (`float`, *optional*):
         | 
| 97 | 
            +
                                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
         | 
| 98 | 
            +
                                computation. If unspecified, it defaults to value recommended by the implementation, using the
         | 
| 99 | 
            +
                                `factor` field to infer the suggested value.
         | 
| 100 | 
            +
                            `beta_fast` (`float`, *optional*):
         | 
| 101 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
         | 
| 102 | 
            +
                                ramp function. If unspecified, it defaults to 32.
         | 
| 103 | 
            +
                            `beta_slow` (`float`, *optional*):
         | 
| 104 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
         | 
| 105 | 
            +
                                ramp function. If unspecified, it defaults to 1.
         | 
| 106 | 
            +
                            `short_factor` (`List[float]`, *optional*):
         | 
| 107 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
         | 
| 108 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 109 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 110 | 
            +
                            `long_factor` (`List[float]`, *optional*):
         | 
| 111 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
         | 
| 112 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 113 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 114 | 
            +
                            `low_freq_factor` (`float`, *optional*):
         | 
| 115 | 
            +
                                Only used with 'Llama3'. Scaling factor applied to low frequency components of the RoPE
         | 
| 116 | 
            +
                            `high_freq_factor` (`float`, *optional*):
         | 
| 117 | 
            +
                                Only used with 'Llama3'. Scaling factor applied to high frequency components of the RoPE
         | 
| 118 | 
            +
                    attention_bias (`bool`, *optional*, defaults to `False`):
         | 
| 119 | 
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         | 
| 120 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 121 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 122 | 
            +
                    mlp_bias (`bool`, *optional*, defaults to `False`):
         | 
| 123 | 
            +
                        Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
         | 
| 124 | 
            +
                    head_dim (`int`, *optional*):
         | 
| 125 | 
            +
                        The attention head dimension. If None, it will default to hidden_size // num_attention_heads
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                ```python
         | 
| 128 | 
            +
                >>> from transformers import OpensciModel, OpensciConfig
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                >>> # Initializing a Opensci Opensci-7b style configuration
         | 
| 131 | 
            +
                >>> configuration = OpensciConfig()
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                >>> # Initializing a model from the Opensci-7b style configuration
         | 
| 134 | 
            +
                >>> model = OpensciModel(configuration)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                >>> # Accessing the model configuration
         | 
| 137 | 
            +
                >>> configuration = model.config
         | 
| 138 | 
            +
                ```"""
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                model_type = "opensci"
         | 
| 141 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                def __init__(
         | 
| 144 | 
            +
                    self,
         | 
| 145 | 
            +
                    vocab_size=32000,
         | 
| 146 | 
            +
                    hidden_size=4096,
         | 
| 147 | 
            +
                    intermediate_size=11008,
         | 
| 148 | 
            +
                    num_hidden_layers=32,
         | 
| 149 | 
            +
                    num_attention_heads=32,
         | 
| 150 | 
            +
                    num_key_value_heads=None,
         | 
| 151 | 
            +
                    hidden_act="silu",
         | 
| 152 | 
            +
                    max_position_embeddings=2048,
         | 
| 153 | 
            +
                    initializer_range=0.02,
         | 
| 154 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 155 | 
            +
                    use_cache=True,
         | 
| 156 | 
            +
                    pad_token_id=None,
         | 
| 157 | 
            +
                    bos_token_id=1,
         | 
| 158 | 
            +
                    eos_token_id=2,
         | 
| 159 | 
            +
                    pretraining_tp=1,
         | 
| 160 | 
            +
                    tie_word_embeddings=False,
         | 
| 161 | 
            +
                    rope_theta=10000.0,
         | 
| 162 | 
            +
                    rope_scaling=None,
         | 
| 163 | 
            +
                    attention_bias=False,
         | 
| 164 | 
            +
                    attention_dropout=0.0,
         | 
| 165 | 
            +
                    mlp_bias=False,
         | 
| 166 | 
            +
                    head_dim=None,
         | 
| 167 | 
            +
                    **kwargs,
         | 
| 168 | 
            +
                ):
         | 
| 169 | 
            +
                    self.vocab_size = vocab_size
         | 
| 170 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 171 | 
            +
                    self.hidden_size = hidden_size
         | 
| 172 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 173 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 174 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    # for backward compatibility
         | 
| 177 | 
            +
                    if num_key_value_heads is None:
         | 
| 178 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 181 | 
            +
                    self.hidden_act = hidden_act
         | 
| 182 | 
            +
                    self.initializer_range = initializer_range
         | 
| 183 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 184 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 185 | 
            +
                    self.use_cache = use_cache
         | 
| 186 | 
            +
                    self.rope_theta = rope_theta
         | 
| 187 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 188 | 
            +
                    self.attention_bias = attention_bias
         | 
| 189 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 190 | 
            +
                    self.mlp_bias = mlp_bias
         | 
| 191 | 
            +
                    self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
         | 
| 192 | 
            +
                    # Validate the correctness of rotary position embeddings parameters
         | 
| 193 | 
            +
                    # BC: if there is a 'type' field, copy it it to 'rope_type'.
         | 
| 194 | 
            +
                    if self.rope_scaling is not None and "type" in self.rope_scaling:
         | 
| 195 | 
            +
                        self.rope_scaling["rope_type"] = self.rope_scaling["type"]
         | 
| 196 | 
            +
                    rope_config_validation(self)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    super().__init__(
         | 
| 199 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 200 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 201 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 202 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 203 | 
            +
                        **kwargs,
         | 
| 204 | 
            +
                    )
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:07ad673ffe5ef200350678be6872905881c5ba1eb9bcabbe6f379a646997de7e
         | 
| 3 | 
            +
            size 250524704
         | 
    	
        modeling_opensci.py
    ADDED
    
    | @@ -0,0 +1,985 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            from typing import Callable, List, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.utils.checkpoint
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from transformers.activations import ACT2FN
         | 
| 27 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 28 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 29 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 30 | 
            +
            from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
         | 
| 31 | 
            +
            from transformers.modeling_outputs import (
         | 
| 32 | 
            +
                BaseModelOutputWithPast,
         | 
| 33 | 
            +
                CausalLMOutputWithPast,
         | 
| 34 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 35 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 36 | 
            +
                TokenClassifierOutput,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
         | 
| 39 | 
            +
            from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
         | 
| 40 | 
            +
            from transformers.processing_utils import Unpack
         | 
| 41 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 42 | 
            +
            from transformers.utils import (
         | 
| 43 | 
            +
                LossKwargs,
         | 
| 44 | 
            +
                add_code_sample_docstrings,
         | 
| 45 | 
            +
                add_start_docstrings,
         | 
| 46 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 47 | 
            +
                logging,
         | 
| 48 | 
            +
                replace_return_docstrings,
         | 
| 49 | 
            +
            )
         | 
| 50 | 
            +
            from transformers.utils.deprecation import deprecate_kwarg
         | 
| 51 | 
            +
            from .configuration_opensci import OpensciConfig
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            _CONFIG_FOR_DOC = "OpensciConfig"
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class OpensciRMSNorm(nn.Module):
         | 
| 60 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 61 | 
            +
                    """
         | 
| 62 | 
            +
                    OpensciRMSNorm is equivalent to T5LayerNorm
         | 
| 63 | 
            +
                    """
         | 
| 64 | 
            +
                    super().__init__()
         | 
| 65 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 66 | 
            +
                    self.variance_epsilon = eps
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def forward(self, hidden_states):
         | 
| 69 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 70 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 71 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 72 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 73 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def extra_repr(self):
         | 
| 76 | 
            +
                    return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            ALL_LAYERNORM_LAYERS.append(OpensciRMSNorm)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            class OpensciRotaryEmbedding(nn.Module):
         | 
| 83 | 
            +
                def __init__(self, config: OpensciConfig, device=None):
         | 
| 84 | 
            +
                    super().__init__()
         | 
| 85 | 
            +
                    # BC: "rope_type" was originally "type"
         | 
| 86 | 
            +
                    if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
         | 
| 87 | 
            +
                        self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 88 | 
            +
                    else:
         | 
| 89 | 
            +
                        self.rope_type = "default"
         | 
| 90 | 
            +
                    self.max_seq_len_cached = config.max_position_embeddings
         | 
| 91 | 
            +
                    self.original_max_seq_len = config.max_position_embeddings
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    self.config = config
         | 
| 94 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
         | 
| 97 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 98 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def _dynamic_frequency_update(self, position_ids, device):
         | 
| 101 | 
            +
                    """
         | 
| 102 | 
            +
                    dynamic RoPE layers should recompute `inv_freq` in the following situations:
         | 
| 103 | 
            +
                    1 - growing beyond the cached sequence length (allow scaling)
         | 
| 104 | 
            +
                    2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
         | 
| 105 | 
            +
                    """
         | 
| 106 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 107 | 
            +
                    if seq_len > self.max_seq_len_cached:  # growth
         | 
| 108 | 
            +
                        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
         | 
| 109 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
         | 
| 110 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
         | 
| 113 | 
            +
                        # This .to() is needed if the model has been moved to a device after being initialized (because
         | 
| 114 | 
            +
                        # the buffer is automatically moved, but not the original copy)
         | 
| 115 | 
            +
                        self.original_inv_freq = self.original_inv_freq.to(device)
         | 
| 116 | 
            +
                        self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
         | 
| 117 | 
            +
                        self.max_seq_len_cached = self.original_max_seq_len
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                @torch.no_grad()
         | 
| 120 | 
            +
                def forward(self, x, position_ids):
         | 
| 121 | 
            +
                    if "dynamic" in self.rope_type:
         | 
| 122 | 
            +
                        self._dynamic_frequency_update(position_ids, device=x.device)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    # Core RoPE block
         | 
| 125 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 126 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 127 | 
            +
                    # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
         | 
| 128 | 
            +
                    device_type = x.device.type
         | 
| 129 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 130 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 131 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 132 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 133 | 
            +
                        cos = emb.cos()
         | 
| 134 | 
            +
                        sin = emb.sin()
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
         | 
| 137 | 
            +
                    cos = cos * self.attention_scaling
         | 
| 138 | 
            +
                    sin = sin * self.attention_scaling
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            def rotate_half(x):
         | 
| 144 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 145 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 146 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 147 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
         | 
| 151 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                Args:
         | 
| 154 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 155 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 156 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 157 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 158 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 159 | 
            +
                        Deprecated and unused.
         | 
| 160 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 161 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 162 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 163 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 164 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 165 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 166 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 167 | 
            +
                Returns:
         | 
| 168 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 169 | 
            +
                """
         | 
| 170 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 171 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 172 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 173 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 174 | 
            +
                return q_embed, k_embed
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class OpensciMLP(nn.Module):
         | 
| 178 | 
            +
                def __init__(self, config):
         | 
| 179 | 
            +
                    super().__init__()
         | 
| 180 | 
            +
                    self.config = config
         | 
| 181 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 182 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 183 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 184 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
         | 
| 185 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
         | 
| 186 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                def forward(self, x):
         | 
| 189 | 
            +
                    down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 190 | 
            +
                    return down_proj
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 194 | 
            +
                """
         | 
| 195 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 196 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 197 | 
            +
                """
         | 
| 198 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 199 | 
            +
                if n_rep == 1:
         | 
| 200 | 
            +
                    return hidden_states
         | 
| 201 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 202 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 203 | 
            +
             | 
| 204 | 
            +
             | 
| 205 | 
            +
            def eager_attention_forward(
         | 
| 206 | 
            +
                module: nn.Module,
         | 
| 207 | 
            +
                query: torch.Tensor,
         | 
| 208 | 
            +
                key: torch.Tensor,
         | 
| 209 | 
            +
                value: torch.Tensor,
         | 
| 210 | 
            +
                attention_mask: Optional[torch.Tensor],
         | 
| 211 | 
            +
                scaling: float,
         | 
| 212 | 
            +
                dropout: float = 0.0,
         | 
| 213 | 
            +
                **kwargs,
         | 
| 214 | 
            +
            ):
         | 
| 215 | 
            +
                key_states = repeat_kv(key, module.num_key_value_groups)
         | 
| 216 | 
            +
                value_states = repeat_kv(value, module.num_key_value_groups)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
         | 
| 219 | 
            +
                if attention_mask is not None:
         | 
| 220 | 
            +
                    causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 221 | 
            +
                    attn_weights = attn_weights + causal_mask
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
         | 
| 224 | 
            +
                attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
         | 
| 225 | 
            +
                attn_output = torch.matmul(attn_weights, value_states)
         | 
| 226 | 
            +
                attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                return attn_output, attn_weights
         | 
| 229 | 
            +
             | 
| 230 | 
            +
             | 
| 231 | 
            +
            class OpensciAttention(nn.Module):
         | 
| 232 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def __init__(self, config: OpensciConfig, layer_idx: int):
         | 
| 235 | 
            +
                    super().__init__()
         | 
| 236 | 
            +
                    self.config = config
         | 
| 237 | 
            +
                    self.layer_idx = layer_idx
         | 
| 238 | 
            +
                    self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
         | 
| 239 | 
            +
                    self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
         | 
| 240 | 
            +
                    self.scaling = self.head_dim**-0.5
         | 
| 241 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 242 | 
            +
                    self.is_causal = True
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    self.q_proj = nn.Linear(
         | 
| 245 | 
            +
                        config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
         | 
| 246 | 
            +
                    )
         | 
| 247 | 
            +
                    self.k_proj = nn.Linear(
         | 
| 248 | 
            +
                        config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
         | 
| 249 | 
            +
                    )
         | 
| 250 | 
            +
                    self.v_proj = nn.Linear(
         | 
| 251 | 
            +
                        config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
         | 
| 252 | 
            +
                    )
         | 
| 253 | 
            +
                    self.o_proj = nn.Linear(
         | 
| 254 | 
            +
                        config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
                    self.qk_layernorm = config.qk_layernorm
         | 
| 257 | 
            +
                    if self.qk_layernorm:
         | 
| 258 | 
            +
                        self.q_layernorm = OpensciRMSNorm(config.head_dim, eps=config.rms_norm_eps)
         | 
| 259 | 
            +
                        self.k_layernorm = OpensciRMSNorm(config.head_dim, eps=config.rms_norm_eps)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                def forward(
         | 
| 262 | 
            +
                    self,
         | 
| 263 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 264 | 
            +
                    position_embeddings: Tuple[torch.Tensor, torch.Tensor],
         | 
| 265 | 
            +
                    attention_mask: Optional[torch.Tensor],
         | 
| 266 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 267 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 268 | 
            +
                    **kwargs: Unpack[FlashAttentionKwargs],
         | 
| 269 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 270 | 
            +
                    input_shape = hidden_states.shape[:-1]
         | 
| 271 | 
            +
                    hidden_shape = (*input_shape, -1, self.head_dim)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 274 | 
            +
                    key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 275 | 
            +
                    value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    if self.qk_layernorm:
         | 
| 278 | 
            +
                        query_states = self.q_layernorm(query_states)
         | 
| 279 | 
            +
                        key_states = self.k_layernorm(key_states)
         | 
| 280 | 
            +
                    cos, sin = position_embeddings
         | 
| 281 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    if past_key_value is not None:
         | 
| 284 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 285 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 286 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    attention_interface: Callable = eager_attention_forward
         | 
| 289 | 
            +
                    if self.config._attn_implementation != "eager":
         | 
| 290 | 
            +
                        if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
         | 
| 291 | 
            +
                            logger.warning_once(
         | 
| 292 | 
            +
                                "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
         | 
| 293 | 
            +
                                'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 294 | 
            +
                            )
         | 
| 295 | 
            +
                        else:
         | 
| 296 | 
            +
                            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    attn_output, attn_weights = attention_interface(
         | 
| 299 | 
            +
                        self,
         | 
| 300 | 
            +
                        query_states,
         | 
| 301 | 
            +
                        key_states,
         | 
| 302 | 
            +
                        value_states,
         | 
| 303 | 
            +
                        attention_mask,
         | 
| 304 | 
            +
                        dropout=0.0 if not self.training else self.attention_dropout,
         | 
| 305 | 
            +
                        scaling=self.scaling,
         | 
| 306 | 
            +
                        **kwargs,
         | 
| 307 | 
            +
                    )
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    attn_output = attn_output.reshape(*input_shape, -1).contiguous()
         | 
| 310 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 311 | 
            +
                    return attn_output, attn_weights
         | 
| 312 | 
            +
             | 
| 313 | 
            +
             | 
| 314 | 
            +
            class OpensciDecoderLayer(nn.Module):
         | 
| 315 | 
            +
                def __init__(self, config: OpensciConfig, layer_idx: int):
         | 
| 316 | 
            +
                    super().__init__()
         | 
| 317 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    self.self_attn = OpensciAttention(config=config, layer_idx=layer_idx)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    self.mlp = OpensciMLP(config)
         | 
| 322 | 
            +
                    self.input_layernorm = OpensciRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 323 | 
            +
                    self.post_attention_layernorm = OpensciRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                def forward(
         | 
| 326 | 
            +
                    self,
         | 
| 327 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 328 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 329 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 330 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 331 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 332 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 333 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 334 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
         | 
| 335 | 
            +
                    **kwargs: Unpack[FlashAttentionKwargs],
         | 
| 336 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 337 | 
            +
                    residual = hidden_states
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    # Self Attention
         | 
| 342 | 
            +
                    hidden_states, self_attn_weights = self.self_attn(
         | 
| 343 | 
            +
                        hidden_states=hidden_states,
         | 
| 344 | 
            +
                        attention_mask=attention_mask,
         | 
| 345 | 
            +
                        position_ids=position_ids,
         | 
| 346 | 
            +
                        past_key_value=past_key_value,
         | 
| 347 | 
            +
                        output_attentions=output_attentions,
         | 
| 348 | 
            +
                        use_cache=use_cache,
         | 
| 349 | 
            +
                        cache_position=cache_position,
         | 
| 350 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 351 | 
            +
                        **kwargs,
         | 
| 352 | 
            +
                    )
         | 
| 353 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    # Fully Connected
         | 
| 356 | 
            +
                    residual = hidden_states
         | 
| 357 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 358 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 359 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    outputs = (hidden_states,)
         | 
| 362 | 
            +
                    if output_attentions:
         | 
| 363 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    return outputs
         | 
| 366 | 
            +
             | 
| 367 | 
            +
             | 
| 368 | 
            +
            Opensci_START_DOCSTRING = r"""
         | 
| 369 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 370 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 371 | 
            +
                etc.)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 374 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 375 | 
            +
                and behavior.
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                Parameters:
         | 
| 378 | 
            +
                    config ([`OpensciConfig`]):
         | 
| 379 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 380 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 381 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 382 | 
            +
            """
         | 
| 383 | 
            +
             | 
| 384 | 
            +
             | 
| 385 | 
            +
            @add_start_docstrings(
         | 
| 386 | 
            +
                "The bare Opensci Model outputting raw hidden-states without any specific head on top.",
         | 
| 387 | 
            +
                Opensci_START_DOCSTRING,
         | 
| 388 | 
            +
            )
         | 
| 389 | 
            +
            class OpensciPreTrainedModel(PreTrainedModel):
         | 
| 390 | 
            +
                config_class = OpensciConfig
         | 
| 391 | 
            +
                base_model_prefix = "model"
         | 
| 392 | 
            +
                supports_gradient_checkpointing = True
         | 
| 393 | 
            +
                _no_split_modules = ["OpensciDecoderLayer"]
         | 
| 394 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 395 | 
            +
                _supports_flash_attn_2 = True
         | 
| 396 | 
            +
                _supports_sdpa = True
         | 
| 397 | 
            +
                _supports_flex_attn = True
         | 
| 398 | 
            +
                _supports_cache_class = True
         | 
| 399 | 
            +
                _supports_quantized_cache = True
         | 
| 400 | 
            +
                _supports_static_cache = True
         | 
| 401 | 
            +
                _supports_attention_backend = True
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                def _init_weights(self, module):
         | 
| 404 | 
            +
                    std = self.config.initializer_range
         | 
| 405 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 406 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 407 | 
            +
                        if module.bias is not None:
         | 
| 408 | 
            +
                            module.bias.data.zero_()
         | 
| 409 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 410 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 411 | 
            +
                        if module.padding_idx is not None:
         | 
| 412 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 413 | 
            +
             | 
| 414 | 
            +
             | 
| 415 | 
            +
            Opensci_INPUTS_DOCSTRING = r"""
         | 
| 416 | 
            +
                Args:
         | 
| 417 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 418 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 419 | 
            +
                        it.
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 422 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 425 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 426 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 429 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 434 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 437 | 
            +
                        `past_key_values`).
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 440 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 441 | 
            +
                        information on the default strategy.
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 444 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 445 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 446 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 447 | 
            +
                        config.n_positions - 1]`.
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 450 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 451 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 452 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 453 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                        Two formats are allowed:
         | 
| 456 | 
            +
                        - a [`~cache_utils.Cache`] instance, see our
         | 
| 457 | 
            +
                        [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
         | 
| 458 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 459 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 460 | 
            +
                        cache format.
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 463 | 
            +
                        legacy cache format will be returned.
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 466 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 467 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 468 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 469 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 470 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 471 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 472 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 473 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 474 | 
            +
                        `past_key_values`).
         | 
| 475 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 476 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 477 | 
            +
                        tensors for more detail.
         | 
| 478 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 479 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 480 | 
            +
                        more detail.
         | 
| 481 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 482 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 483 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 484 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 485 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 486 | 
            +
                        the complete sequence length.
         | 
| 487 | 
            +
            """
         | 
| 488 | 
            +
             | 
| 489 | 
            +
             | 
| 490 | 
            +
            @add_start_docstrings(
         | 
| 491 | 
            +
                "The bare Opensci Model outputting raw hidden-states without any specific head on top.",
         | 
| 492 | 
            +
                Opensci_START_DOCSTRING,
         | 
| 493 | 
            +
            )
         | 
| 494 | 
            +
            class OpensciModel(OpensciPreTrainedModel):
         | 
| 495 | 
            +
                """
         | 
| 496 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpensciDecoderLayer`]
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                Args:
         | 
| 499 | 
            +
                    config: OpensciConfig
         | 
| 500 | 
            +
                """
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                def __init__(self, config: OpensciConfig):
         | 
| 503 | 
            +
                    super().__init__(config)
         | 
| 504 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 505 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 508 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 509 | 
            +
                        [OpensciDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 510 | 
            +
                    )
         | 
| 511 | 
            +
                    self.norm = OpensciRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 512 | 
            +
                    self.rotary_emb = OpensciRotaryEmbedding(config=config)
         | 
| 513 | 
            +
                    self.gradient_checkpointing = False
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    # Initialize weights and apply final processing
         | 
| 516 | 
            +
                    self.post_init()
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                def get_input_embeddings(self):
         | 
| 519 | 
            +
                    return self.embed_tokens
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                def set_input_embeddings(self, value):
         | 
| 522 | 
            +
                    self.embed_tokens = value
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                @add_start_docstrings_to_model_forward(Opensci_INPUTS_DOCSTRING)
         | 
| 525 | 
            +
                def forward(
         | 
| 526 | 
            +
                    self,
         | 
| 527 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 528 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 529 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 530 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 531 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 532 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 533 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 534 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 535 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 536 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 537 | 
            +
                    **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
         | 
| 538 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 539 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 540 | 
            +
                    output_hidden_states = (
         | 
| 541 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 542 | 
            +
                    )
         | 
| 543 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 544 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 547 | 
            +
                        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 550 | 
            +
                        logger.warning_once(
         | 
| 551 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 552 | 
            +
                        )
         | 
| 553 | 
            +
                        use_cache = False
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    if inputs_embeds is None:
         | 
| 556 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    if use_cache and past_key_values is None:
         | 
| 559 | 
            +
                        past_key_values = DynamicCache()
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    if cache_position is None:
         | 
| 562 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 563 | 
            +
                        cache_position = torch.arange(
         | 
| 564 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 565 | 
            +
                        )
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    if position_ids is None:
         | 
| 568 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    causal_mask = self._update_causal_mask(
         | 
| 571 | 
            +
                        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
         | 
| 572 | 
            +
                    )
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    hidden_states = inputs_embeds
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                    # create position embeddings to be shared across the decoder layers
         | 
| 577 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                    # decoder layers
         | 
| 580 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 581 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                    for decoder_layer in self.layers[: self.config.num_hidden_layers]:
         | 
| 584 | 
            +
                        if output_hidden_states:
         | 
| 585 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 588 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 589 | 
            +
                                decoder_layer.__call__,
         | 
| 590 | 
            +
                                hidden_states,
         | 
| 591 | 
            +
                                causal_mask,
         | 
| 592 | 
            +
                                position_ids,
         | 
| 593 | 
            +
                                past_key_values,
         | 
| 594 | 
            +
                                output_attentions,
         | 
| 595 | 
            +
                                use_cache,
         | 
| 596 | 
            +
                                cache_position,
         | 
| 597 | 
            +
                                position_embeddings,
         | 
| 598 | 
            +
                            )
         | 
| 599 | 
            +
                        else:
         | 
| 600 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 601 | 
            +
                                hidden_states,
         | 
| 602 | 
            +
                                attention_mask=causal_mask,
         | 
| 603 | 
            +
                                position_ids=position_ids,
         | 
| 604 | 
            +
                                past_key_value=past_key_values,
         | 
| 605 | 
            +
                                output_attentions=output_attentions,
         | 
| 606 | 
            +
                                use_cache=use_cache,
         | 
| 607 | 
            +
                                cache_position=cache_position,
         | 
| 608 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 609 | 
            +
                                **flash_attn_kwargs,
         | 
| 610 | 
            +
                            )
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                        if output_attentions:
         | 
| 615 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 620 | 
            +
                    if output_hidden_states:
         | 
| 621 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    output = BaseModelOutputWithPast(
         | 
| 624 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 625 | 
            +
                        past_key_values=past_key_values if use_cache else None,
         | 
| 626 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 627 | 
            +
                        attentions=all_self_attns,
         | 
| 628 | 
            +
                    )
         | 
| 629 | 
            +
                    return output if return_dict else output.to_tuple()
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                def _update_causal_mask(
         | 
| 632 | 
            +
                    self,
         | 
| 633 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 634 | 
            +
                    input_tensor: torch.Tensor,
         | 
| 635 | 
            +
                    cache_position: torch.Tensor,
         | 
| 636 | 
            +
                    past_key_values: Cache,
         | 
| 637 | 
            +
                    output_attentions: bool,
         | 
| 638 | 
            +
                ):
         | 
| 639 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 640 | 
            +
                        if attention_mask is not None and (attention_mask == 0.0).any():
         | 
| 641 | 
            +
                            return attention_mask
         | 
| 642 | 
            +
                        return None
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                    # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
         | 
| 645 | 
            +
                    # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
         | 
| 646 | 
            +
                    # to infer the attention mask.
         | 
| 647 | 
            +
                    past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 648 | 
            +
                    using_static_cache = isinstance(past_key_values, StaticCache)
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                    # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
         | 
| 651 | 
            +
                    if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
         | 
| 652 | 
            +
                        if AttentionMaskConverter._ignore_causal_mask_sdpa(
         | 
| 653 | 
            +
                            attention_mask,
         | 
| 654 | 
            +
                            inputs_embeds=input_tensor,
         | 
| 655 | 
            +
                            past_key_values_length=past_seen_tokens,
         | 
| 656 | 
            +
                            is_training=self.training,
         | 
| 657 | 
            +
                        ):
         | 
| 658 | 
            +
                            return None
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 661 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 662 | 
            +
                    if using_static_cache:
         | 
| 663 | 
            +
                        target_length = past_key_values.get_max_cache_shape()
         | 
| 664 | 
            +
                    else:
         | 
| 665 | 
            +
                        target_length = (
         | 
| 666 | 
            +
                            attention_mask.shape[-1]
         | 
| 667 | 
            +
                            if isinstance(attention_mask, torch.Tensor)
         | 
| 668 | 
            +
                            else past_seen_tokens + sequence_length + 1
         | 
| 669 | 
            +
                        )
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                    # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
         | 
| 672 | 
            +
                    causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 673 | 
            +
                        attention_mask,
         | 
| 674 | 
            +
                        sequence_length=sequence_length,
         | 
| 675 | 
            +
                        target_length=target_length,
         | 
| 676 | 
            +
                        dtype=dtype,
         | 
| 677 | 
            +
                        device=device,
         | 
| 678 | 
            +
                        cache_position=cache_position,
         | 
| 679 | 
            +
                        batch_size=input_tensor.shape[0],
         | 
| 680 | 
            +
                    )
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    if (
         | 
| 683 | 
            +
                        self.config._attn_implementation == "sdpa"
         | 
| 684 | 
            +
                        and attention_mask is not None
         | 
| 685 | 
            +
                        and attention_mask.device.type in ["cuda", "xpu"]
         | 
| 686 | 
            +
                        and not output_attentions
         | 
| 687 | 
            +
                    ):
         | 
| 688 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 689 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 690 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 691 | 
            +
                        min_dtype = torch.finfo(dtype).min
         | 
| 692 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                    return causal_mask
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                @staticmethod
         | 
| 697 | 
            +
                def _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 698 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 699 | 
            +
                    sequence_length: int,
         | 
| 700 | 
            +
                    target_length: int,
         | 
| 701 | 
            +
                    dtype: torch.dtype,
         | 
| 702 | 
            +
                    device: torch.device,
         | 
| 703 | 
            +
                    cache_position: torch.Tensor,
         | 
| 704 | 
            +
                    batch_size: int,
         | 
| 705 | 
            +
                    **kwargs,
         | 
| 706 | 
            +
                ):
         | 
| 707 | 
            +
                    """
         | 
| 708 | 
            +
                    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 709 | 
            +
                    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                    Args:
         | 
| 712 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 713 | 
            +
                            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
         | 
| 714 | 
            +
                            `(batch_size, 1, query_length, key_value_length)`.
         | 
| 715 | 
            +
                        sequence_length (`int`):
         | 
| 716 | 
            +
                            The sequence length being processed.
         | 
| 717 | 
            +
                        target_length (`int`):
         | 
| 718 | 
            +
                            The target length: when generating with static cache, the mask should be as long as the static cache,
         | 
| 719 | 
            +
                            to account for the 0 padding, the part of the cache that is not filled yet.
         | 
| 720 | 
            +
                        dtype (`torch.dtype`):
         | 
| 721 | 
            +
                            The dtype to use for the 4D attention mask.
         | 
| 722 | 
            +
                        device (`torch.device`):
         | 
| 723 | 
            +
                            The device to plcae the 4D attention mask on.
         | 
| 724 | 
            +
                        cache_position (`torch.Tensor`):
         | 
| 725 | 
            +
                            Indices depicting the position of the input sequence tokens in the sequence.
         | 
| 726 | 
            +
                        batch_size (`torch.Tensor`):
         | 
| 727 | 
            +
                            Batch size.
         | 
| 728 | 
            +
                    """
         | 
| 729 | 
            +
                    if attention_mask is not None and attention_mask.dim() == 4:
         | 
| 730 | 
            +
                        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
         | 
| 731 | 
            +
                        causal_mask = attention_mask
         | 
| 732 | 
            +
                    else:
         | 
| 733 | 
            +
                        min_dtype = torch.finfo(dtype).min
         | 
| 734 | 
            +
                        causal_mask = torch.full(
         | 
| 735 | 
            +
                            (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
         | 
| 736 | 
            +
                        )
         | 
| 737 | 
            +
                        if sequence_length != 1:
         | 
| 738 | 
            +
                            causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 739 | 
            +
                        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 740 | 
            +
                        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
         | 
| 741 | 
            +
                        if attention_mask is not None:
         | 
| 742 | 
            +
                            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 743 | 
            +
                            mask_length = attention_mask.shape[-1]
         | 
| 744 | 
            +
                            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
         | 
| 745 | 
            +
                            padding_mask = padding_mask == 0
         | 
| 746 | 
            +
                            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
         | 
| 747 | 
            +
                                padding_mask, min_dtype
         | 
| 748 | 
            +
                            )
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                    return causal_mask
         | 
| 751 | 
            +
             | 
| 752 | 
            +
             | 
| 753 | 
            +
            class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
         | 
| 754 | 
            +
             | 
| 755 | 
            +
             | 
| 756 | 
            +
            class OpensciForCausalLM(OpensciPreTrainedModel, GenerationMixin):
         | 
| 757 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 758 | 
            +
                _tp_plan = {"lm_head": "colwise_rep"}
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                def __init__(self, config):
         | 
| 761 | 
            +
                    super().__init__(config)
         | 
| 762 | 
            +
                    self.model = OpensciModel(config)
         | 
| 763 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 764 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                    # Initialize weights and apply final processing
         | 
| 767 | 
            +
                    self.post_init()
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                def get_input_embeddings(self):
         | 
| 770 | 
            +
                    return self.model.embed_tokens
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                def set_input_embeddings(self, value):
         | 
| 773 | 
            +
                    self.model.embed_tokens = value
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                def get_output_embeddings(self):
         | 
| 776 | 
            +
                    return self.lm_head
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 779 | 
            +
                    self.lm_head = new_embeddings
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                def set_decoder(self, decoder):
         | 
| 782 | 
            +
                    self.model = decoder
         | 
| 783 | 
            +
             | 
| 784 | 
            +
                def get_decoder(self):
         | 
| 785 | 
            +
                    return self.model
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
         | 
| 788 | 
            +
                @add_start_docstrings_to_model_forward(Opensci_INPUTS_DOCSTRING)
         | 
| 789 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 790 | 
            +
                def forward(
         | 
| 791 | 
            +
                    self,
         | 
| 792 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 793 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 794 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 795 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 796 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 797 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 798 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 799 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 800 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 801 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 802 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 803 | 
            +
                    logits_to_keep: Union[int, torch.Tensor] = 0,
         | 
| 804 | 
            +
                    **kwargs: Unpack[KwargsForCausalLM],
         | 
| 805 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 806 | 
            +
                    r"""
         | 
| 807 | 
            +
                    Args:
         | 
| 808 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 809 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 810 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 811 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 812 | 
            +
             | 
| 813 | 
            +
                        logits_to_keep (`int` or `torch.Tensor`, *optional*):
         | 
| 814 | 
            +
                            If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
         | 
| 815 | 
            +
                            `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
         | 
| 816 | 
            +
                            token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
         | 
| 817 | 
            +
                            If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
         | 
| 818 | 
            +
                            This is useful when using packed tensor format (single dimension for batch and sequence length).
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                    Returns:
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                    Example:
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                    ```python
         | 
| 825 | 
            +
                    >>> from transformers import AutoTokenizer, OpensciForCausalLM
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                    >>> model = OpensciForCausalLM.from_pretrained("meta-Opensci/Opensci-2-7b-hf")
         | 
| 828 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("meta-Opensci/Opensci-2-7b-hf")
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 831 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    >>> # Generate
         | 
| 834 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 835 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 836 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 837 | 
            +
                    ```"""
         | 
| 838 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 839 | 
            +
                    output_hidden_states = (
         | 
| 840 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 841 | 
            +
                    )
         | 
| 842 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 845 | 
            +
                    outputs = self.model(
         | 
| 846 | 
            +
                        input_ids=input_ids,
         | 
| 847 | 
            +
                        attention_mask=attention_mask,
         | 
| 848 | 
            +
                        position_ids=position_ids,
         | 
| 849 | 
            +
                        past_key_values=past_key_values,
         | 
| 850 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 851 | 
            +
                        use_cache=use_cache,
         | 
| 852 | 
            +
                        output_attentions=output_attentions,
         | 
| 853 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 854 | 
            +
                        return_dict=return_dict,
         | 
| 855 | 
            +
                        cache_position=cache_position,
         | 
| 856 | 
            +
                        **kwargs,
         | 
| 857 | 
            +
                    )
         | 
| 858 | 
            +
             | 
| 859 | 
            +
                    hidden_states = outputs[0]
         | 
| 860 | 
            +
                    # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
         | 
| 861 | 
            +
                    slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
         | 
| 862 | 
            +
                    logits = self.lm_head(hidden_states[:, slice_indices, :])
         | 
| 863 | 
            +
             | 
| 864 | 
            +
                    loss = None
         | 
| 865 | 
            +
                    if labels is not None:
         | 
| 866 | 
            +
                        loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
         | 
| 867 | 
            +
             | 
| 868 | 
            +
                    if not return_dict:
         | 
| 869 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 870 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 873 | 
            +
                        loss=loss,
         | 
| 874 | 
            +
                        logits=logits,
         | 
| 875 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 876 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 877 | 
            +
                        attentions=outputs.attentions,
         | 
| 878 | 
            +
                    )
         | 
| 879 | 
            +
             | 
| 880 | 
            +
             | 
| 881 | 
            +
            @add_start_docstrings(
         | 
| 882 | 
            +
                """
         | 
| 883 | 
            +
                The Opensci Model transformer with a sequence classification head on top (linear layer).
         | 
| 884 | 
            +
             | 
| 885 | 
            +
                [`OpensciForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 886 | 
            +
                (e.g. GPT-2) do.
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 889 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 890 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 891 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 892 | 
            +
                each row of the batch).
         | 
| 893 | 
            +
                """,
         | 
| 894 | 
            +
                Opensci_START_DOCSTRING,
         | 
| 895 | 
            +
            )
         | 
| 896 | 
            +
            class OpensciForSequenceClassification(OpensciPreTrainedModel):
         | 
| 897 | 
            +
                def __init__(self, config):
         | 
| 898 | 
            +
                    super().__init__(config)
         | 
| 899 | 
            +
                    self.num_labels = config.num_labels
         | 
| 900 | 
            +
                    self.model = OpensciModel(config)
         | 
| 901 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    # Initialize weights and apply final processing
         | 
| 904 | 
            +
                    self.post_init()
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                def get_input_embeddings(self):
         | 
| 907 | 
            +
                    return self.model.embed_tokens
         | 
| 908 | 
            +
             | 
| 909 | 
            +
                def set_input_embeddings(self, value):
         | 
| 910 | 
            +
                    self.model.embed_tokens = value
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                @add_start_docstrings_to_model_forward(Opensci_INPUTS_DOCSTRING)
         | 
| 913 | 
            +
                def forward(
         | 
| 914 | 
            +
                    self,
         | 
| 915 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 916 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 917 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 918 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 919 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 920 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 921 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 922 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 923 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 924 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 925 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 926 | 
            +
                    r"""
         | 
| 927 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 928 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 929 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 930 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 931 | 
            +
                    """
         | 
| 932 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 933 | 
            +
             | 
| 934 | 
            +
                    transformer_outputs = self.model(
         | 
| 935 | 
            +
                        input_ids,
         | 
| 936 | 
            +
                        attention_mask=attention_mask,
         | 
| 937 | 
            +
                        position_ids=position_ids,
         | 
| 938 | 
            +
                        past_key_values=past_key_values,
         | 
| 939 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 940 | 
            +
                        use_cache=use_cache,
         | 
| 941 | 
            +
                        output_attentions=output_attentions,
         | 
| 942 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 943 | 
            +
                        return_dict=return_dict,
         | 
| 944 | 
            +
                    )
         | 
| 945 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 946 | 
            +
                    logits = self.score(hidden_states)
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                    if input_ids is not None:
         | 
| 949 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 950 | 
            +
                    else:
         | 
| 951 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 954 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 955 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 956 | 
            +
                        last_non_pad_token = -1
         | 
| 957 | 
            +
                    elif input_ids is not None:
         | 
| 958 | 
            +
                        # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
         | 
| 959 | 
            +
                        non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
         | 
| 960 | 
            +
                        token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
         | 
| 961 | 
            +
                        last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
         | 
| 962 | 
            +
                    else:
         | 
| 963 | 
            +
                        last_non_pad_token = -1
         | 
| 964 | 
            +
                        logger.warning_once(
         | 
| 965 | 
            +
                            f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
         | 
| 966 | 
            +
                            "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
         | 
| 967 | 
            +
                        )
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                    loss = None
         | 
| 972 | 
            +
                    if labels is not None:
         | 
| 973 | 
            +
                        loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                    if not return_dict:
         | 
| 976 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 977 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 978 | 
            +
             | 
| 979 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 980 | 
            +
                        loss=loss,
         | 
| 981 | 
            +
                        logits=pooled_logits,
         | 
| 982 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 983 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 984 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 985 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "tokenizer_class": "GPTNeoXTokenizer"}
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
