--- license: apache-2.0 language: - zh - en tags: - AgentCPM-GUI - gui agent - android agent - multimodal base_model: - openbmb/MiniCPM-V-2_6 pipeline_tag: image-text-to-text --- # AgentCPM-GUI [GitHub](https://github.com/OpenBMB/AgentCPM-GUI) | Technical Blog ## News * [2025-05-13] 🚀🚀🚀 We have open-sourced **AgentCPM-GUI**, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities. ## Overview **AgentCPM-GUI** is an open-source on-device LLM agent model jointly developed by [THUNLP](https://nlp.csai.tsinghua.edu.cn), Renmin University of China and [ModelBest](https://modelbest.cn/en). Built on [MiniCPM-V](https://github.com/OpenBMB/MiniCPM-V) with 8 billion parameters, it accepts smartphone screenshots as input and autonomously executes user-specified tasks. Key features include: - **High-quality GUI grounding** — Pre-training on a large-scale bilingual Android dataset significantly boosts localization and comprehension of common GUI widgets (buttons, input boxes, labels, icons, etc.). - **Chinese-app operation** — The first open-source GUI agent finely tuned for Chinese apps, covering 30 + popular titles such as Amap, Dianping, bilibili and Xiaohongshu. - **Enhanced planning & reasoning** — Reinforcement fine-tuning (RFT) lets the model “think” before outputting an action, greatly improving success on complex tasks. - **Compact action-space design** — An optimized action space and concise JSON format reduce the average action length to 9.7 tokens, boosting on-device inference efficiency. Demo Case (1x speed): https://github.com/user-attachments/assets/5472a659-cd71-4bce-a181-0981129c6a81 ## Quick Start ### Install dependencies ```bash git clone https://github.com/OpenBMB/AgentCPM-GUI cd AgentCPM-GUI conda create -n gui_agent python=3.11 conda activate gui_agent pip install -r requirements.txt ``` ### Download the model Download [AgentCPM-GUI](https://huggingface.co/openbmb/AgentCPM-GUI) from Hugging Face and place it in `model/AgentCPM-GUI`. #### Huggingface Inference ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from PIL import Image import json # 1. Load the model and tokenizer model_path = "model/AgentCPM-GUI" # model path tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) model = model.to("cuda:0") # 2. Build the input instruction = "请点击屏幕上的‘会员’按钮" image_path = "assets/test.jpeg" image = Image.open(image_path).convert("RGB") # 3. Resize the longer side to 1120 px to save compute & memory def __resize__(origin_img): resolution = origin_img.size w,h = resolution max_line_res = 1120 if max_line_res is not None: max_line = max_line_res if h > max_line: w = int(w * max_line / h) h = max_line if w > max_line: h = int(h * max_line / w) w = max_line img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS) return img image = __resize__(image) # 4. Build the message format messages = [{ "role": "user", "content": [ f"{instruction}\n当前屏幕截图:", image ] }] # 5. Inference ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8")) items = list(ACTION_SCHEMA.items()) insert_index = 3 items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional" ACTION_SCHEMA = dict(items) SYSTEM_PROMPT = f'''# Role 你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。 # Task 针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。 # Rule - 以紧凑JSON格式输出 - 输出操作必须遵循Schema约束 # Schema {json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}''' outputs = model.chat( image=None, msgs=messages, system_prompt=SYSTEM_PROMPT, tokenizer=tokenizer, temperature=0.1, top_p=0.3, n=1, ) # 6. Output print(outputs) ``` Expected output: ```JSON {"thought":"任务目标是点击屏幕上的‘会员’按钮。当前界面显示了应用的推荐页面,顶部有一个导航栏。点击‘会员’按钮可以访问应用的会员相关内容。","POINT":[729,69]} ``` #### vLLM Inference ```bash # Launch the vLLM server vllm serve model/AgentCPM-GUI --served-model-name AgentCPM-GUI --tensor_parallel_size 1 --trust-remote-code ``` ```python import base64 import io import json import requests from PIL import Image END_POINT = "http://localhost:8000/v1/chat/completions" # Replace with actual endpoint # system prompt ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8")) items = list(ACTION_SCHEMA.items()) insert_index = 3 items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional" ACTION_SCHEMA = dict(items) SYSTEM_PROMPT = f'''# Role 你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。 # Task 针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。 # Rule - 以紧凑JSON格式输出 - 输出操作必须遵循Schema约束 # Schema {json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}''' def encode_image(image: Image.Image) -> str: """Convert PIL Image to base64-encoded string.""" with io.BytesIO() as in_mem_file: image.save(in_mem_file, format="JPEG") in_mem_file.seek(0) return base64.b64encode(in_mem_file.read()).decode("utf-8") def __resize__(origin_img): resolution = origin_img.size w,h = resolution max_line_res = 1120 if max_line_res is not None: max_line = max_line_res if h > max_line: w = int(w * max_line / h) h = max_line if w > max_line: h = int(h * max_line / w) w = max_line img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS) return img def predict(text_prompt: str, image: Image.Image): messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": [ {"type": "text", "text": f"{text_prompt}\n当前屏幕截图:"}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image)}"}} ]} ] payload = { "model": "AgentCPM-GUI", # Your model name "temperature": 0.1, "messages": messages, "max_tokens": 2048, } headers = { "Content-Type": "application/json", } response = requests.post(END_POINT, headers=headers, json=payload) assistant_msg = response.json()["choices"][0]["message"]["content"] return assistant_msg image = __resize__(Image.open("assets/test.jpeg")) instruction = "请点击屏幕上的‘会员’按钮" response = predict(instruction, image) print(response) ``` ### Action Space At each step, the agent outputs is a single JSON object that contains: - One (and only one) primitive action, chosen from the list below; - Optional modifiers (`duration`, `thought`) and/or a task-level flag (`STATUS`). Note that all keywords are **case-sensitive**, and we use **compact JSON** (i.e., no extra whitespace), which affects the tokenizer’s behavior. | Action | Required field(s) | Optional field(s) | Purpose | Example | | --------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------- | --------------------------------------------------------------------------- | ------------------------------------------------ | | **Click** | `POINT:[x,y]` | `duration`,`thought`,`STATUS` | Single tap at the normalized screen coordinate (0–1000, origin = top-left). | `{"POINT":[480,320]}` | | **Long Press** | `POINT:[x,y]`
`duration:1000` | `duration`,`thought`,`STATUS` | Touch-and-hold at coordinate (set a longer duration, e.g. >200 ms). | `{"POINT":[480,320],"duration":1000}` | | **Swipe** | `POINT:[x,y]`
`to:"up" \| "down" \| "left" \| "right"` **or** `to:[x,y]` | `duration`,`thought`,`STATUS` | Swipe from the start point toward a direction **or** another coordinate. | `{"POINT":[500,200],"to":"down"}` | | **Press key** | `PRESS:"HOME" \| "BACK" \| "ENTER"` | `duration`,`thought`,`STATUS` | Trigger a hardware / navigation button. | `{"PRESS":"HOME"}` | | **Type text** | `TYPE:""` | `duration`,`thought`,`STATUS` | Insert the given text at the current input focus. | `{"TYPE":"Hello, world!"}` | | **Wait** | `duration` | `thought`,`STATUS` | Idle for the specified time without any other action. | `{"duration":500}` | | **Task-level status** | `STATUS:"start" \| "continue" \| "finish" \| "satisfied" \| "impossible" \| "interrupt" \| "need_feedback"` | `duration`,`thought` | Report task progress; may appear **alone** or **with a primitive action**. | `{"STATUS":"finish"}` | ## Fine-tuning Source code for SFT and RFT training is provided — see [GitHub](https://github.com/OpenBMB/AgentCPM-GUI). ## Performance Evaluation ### Grounding Benchmark | Model | fun2point | text2point | bbox2text | average | | ------------------------- | -------------- | -------------- | -------------- | -------------- | | **AgentCPM-GUI-8B** | **79.1** | **76.5** | **58.2** | **71.3** | | Qwen2.5-VL-7B | 36.8 | 52.0 | 44.1 | 44.3 | | Intern2.5-VL-8B | 17.2 | 24.2 | 45.9 | 29.1 | | Intern2.5-VL-26B | 14.8 | 16.6 | 36.3 | 22.6 | | OS-Genesis-7B | 8.3 | 5.8 | 4.0 | 6.0 | | UI-TARS-7B | 56.8 | 66.7 | 1.4 | 41.6 | | OS-Altas-7B | 53.6 | 60.7 | 0.4 | 38.2 | | Aguvis-7B | 60.8 | **76.5** | 0.2 | 45.8 | | GPT-4o | 22.1 | 19.9 | 14.3 | 18.8 | | GPT-4o with Grounding | 44.3 | 44.0 | 14.3 | 44.2 | ### Agent Benchmark | Dataset | Android Control-Low TM | Android Control-Low EM | Android Control-High TM | Android Control-High EM | GUI-Odyssey TM | GUI-Odyssey EM | AITZ TM | AITZ EM | Chinese APP TM | Chinese APP EM | | ------------------------- | ---------------------- | ---------------------- | ----------------------- | ----------------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | | **AgentCPM-GUI-8B** | **94.39** | **90.20** | **77.70** | **69.17** | **90.85** | **74.96** | **85.71** | **76.38** | **96.86** | **91.28** | | Qwen2.5-VL-7B | 92.11 | 82.12 | 69.65 | 57.36 | 55.33 | 40.90 | 73.16 | 57.58 | 68.53 | 48.80 | | UI-TARS-7B | 93.52 | 88.89 | 68.53 | 60.81 | 78.79 | 57.33 | 71.74 | 55.31 | 71.01 | 53.92 | | OS-Genesis-7B | 90.74 | 74.22 | 65.92 | 44.43 | 11.67 | 3.63 | 19.98 | 8.45 | 38.10 | 14.50 | | OS-Atlas-7B | 73.03 | 67.25 | 70.36 | 56.53 | 91.83* | 76.76* | 74.13 | 58.45 | 81.53 | 55.89 | | Aguvis-7B | 93.85 | 89.40 | 65.56 | 54.18 | 26.71 | 13.54 | 35.71 | 18.99 | 67.43 | 38.20 | | OdysseyAgent-7B | 65.10 | 39.16 | 58.80 | 32.74 | 90.83 | 73.67 | 59.17 | 31.60 | 67.56 | 25.44 | | GPT-4o | - | 19.49 | - | 20.80 | - | 20.39 | 70.00 | 35.30 | 3.67 | 3.67 | | Gemini 2.0 | - | 28.50 | - | 60.20 | - | 3.27 | - | - | - | - | | Claude | - | 19.40 | - | 12.50 | 60.90 | - | - | - | - | - | > \*Different train/test splits TM and EM stand for the **Type Match** and **Exact Match**, respectively. All evaluation data and code are open-sourced — see [here](eval) for details. All evaluation data and code are open-sourced — see [here](https://github.com/OpenBMB/AgentCPM-GUI/tree/main/eval) for details. ## Evaluation Data We provide **CAGUI**, an evaluation benchmark for Chinese apps covering **grounding** and **agent** tasks. See the dataset on [Hugging Face](https://huggingface.co/datasets/openbmb/CAGUI). ## License * Code in this repository is released under the [Apache-2.0](./LICENSE) license. ## Citation If **AgentCPM-GUI** is useful for your research, please cite: ```bibtex @misc{2025, author = {THUNLP}, title = {AgentCPM-GUI}, year = {2025}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/OpenBMB/AgentCPM-GUI}} } ```