---
license: apache-2.0
language:
- zh
- en
tags:
- AgentCPM-GUI
- gui agent
- android agent
- multimodal
base_model:
- openbmb/MiniCPM-V-2_6
pipeline_tag: image-text-to-text
---
# AgentCPM-GUI
[GitHub](https://github.com/OpenBMB/AgentCPM-GUI) | Technical Blog
## News
* [2025-05-13] 🚀🚀🚀 We have open-sourced **AgentCPM-GUI**, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities.
## Overview
**AgentCPM-GUI** is an open-source on-device LLM agent model jointly developed by [THUNLP](https://nlp.csai.tsinghua.edu.cn), Renmin University of China and [ModelBest](https://modelbest.cn/en). Built on [MiniCPM-V](https://github.com/OpenBMB/MiniCPM-V) with 8 billion parameters, it accepts smartphone screenshots as input and autonomously executes user-specified tasks.
Key features include:
- **High-quality GUI grounding** — Pre-training on a large-scale bilingual Android dataset significantly boosts localization and comprehension of common GUI widgets (buttons, input boxes, labels, icons, etc.).
- **Chinese-app operation** — The first open-source GUI agent finely tuned for Chinese apps, covering 30 + popular titles such as Amap, Dianping, bilibili and Xiaohongshu.
- **Enhanced planning & reasoning** — Reinforcement fine-tuning (RFT) lets the model “think” before outputting an action, greatly improving success on complex tasks.
- **Compact action-space design** — An optimized action space and concise JSON format reduce the average action length to 9.7 tokens, boosting on-device inference efficiency.
Demo Case (1x speed):
https://github.com/user-attachments/assets/5472a659-cd71-4bce-a181-0981129c6a81
## Quick Start
### Install dependencies
```bash
git clone https://github.com/OpenBMB/AgentCPM-GUI
cd AgentCPM-GUI
conda create -n gui_agent python=3.11
conda activate gui_agent
pip install -r requirements.txt
```
### Download the model
Download [AgentCPM-GUI](https://huggingface.co/openbmb/AgentCPM-GUI) from Hugging Face and place it in `model/AgentCPM-GUI`.
#### Huggingface Inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import json
# 1. Load the model and tokenizer
model_path = "model/AgentCPM-GUI" # model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to("cuda:0")
# 2. Build the input
instruction = "请点击屏幕上的‘会员’按钮"
image_path = "assets/test.jpeg"
image = Image.open(image_path).convert("RGB")
# 3. Resize the longer side to 1120 px to save compute & memory
def __resize__(origin_img):
resolution = origin_img.size
w,h = resolution
max_line_res = 1120
if max_line_res is not None:
max_line = max_line_res
if h > max_line:
w = int(w * max_line / h)
h = max_line
if w > max_line:
h = int(h * max_line / w)
w = max_line
img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
return img
image = __resize__(image)
# 4. Build the message format
messages = [{
"role": "user",
"content": [
f"{instruction}\n当前屏幕截图:",
image
]
}]
# 5. Inference
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。
# Task
针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。
# Rule
- 以紧凑JSON格式输出
- 输出操作必须遵循Schema约束
# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''
outputs = model.chat(
image=None,
msgs=messages,
system_prompt=SYSTEM_PROMPT,
tokenizer=tokenizer,
temperature=0.1,
top_p=0.3,
n=1,
)
# 6. Output
print(outputs)
```
Expected output:
```JSON
{"thought":"任务目标是点击屏幕上的‘会员’按钮。当前界面显示了应用的推荐页面,顶部有一个导航栏。点击‘会员’按钮可以访问应用的会员相关内容。","POINT":[729,69]}
```
#### vLLM Inference
```bash
# Launch the vLLM server
vllm serve model/AgentCPM-GUI --served-model-name AgentCPM-GUI --tensor_parallel_size 1 --trust-remote-code
```
```python
import base64
import io
import json
import requests
from PIL import Image
END_POINT = "http://localhost:8000/v1/chat/completions" # Replace with actual endpoint
# system prompt
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。
# Task
针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。
# Rule
- 以紧凑JSON格式输出
- 输出操作必须遵循Schema约束
# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''
def encode_image(image: Image.Image) -> str:
"""Convert PIL Image to base64-encoded string."""
with io.BytesIO() as in_mem_file:
image.save(in_mem_file, format="JPEG")
in_mem_file.seek(0)
return base64.b64encode(in_mem_file.read()).decode("utf-8")
def __resize__(origin_img):
resolution = origin_img.size
w,h = resolution
max_line_res = 1120
if max_line_res is not None:
max_line = max_line_res
if h > max_line:
w = int(w * max_line / h)
h = max_line
if w > max_line:
h = int(h * max_line / w)
w = max_line
img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
return img
def predict(text_prompt: str, image: Image.Image):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": [
{"type": "text", "text": f"{text_prompt}\n当前屏幕截图:"},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image)}"}}
]}
]
payload = {
"model": "AgentCPM-GUI", # Your model name
"temperature": 0.1,
"messages": messages,
"max_tokens": 2048,
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(END_POINT, headers=headers, json=payload)
assistant_msg = response.json()["choices"][0]["message"]["content"]
return assistant_msg
image = __resize__(Image.open("assets/test.jpeg"))
instruction = "请点击屏幕上的‘会员’按钮"
response = predict(instruction, image)
print(response)
```
### Action Space
At each step, the agent outputs is a single JSON object that contains:
- One (and only one) primitive action, chosen from the list below;
- Optional modifiers (`duration`, `thought`) and/or a task-level flag (`STATUS`).
Note that all keywords are **case-sensitive**, and we use **compact JSON** (i.e., no extra whitespace), which affects the tokenizer’s behavior.
| Action | Required field(s) | Optional field(s) | Purpose | Example |
| --------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------- | --------------------------------------------------------------------------- | ------------------------------------------------ |
| **Click** | `POINT:[x,y]` | `duration`,`thought`,`STATUS` | Single tap at the normalized screen coordinate (0–1000, origin = top-left). | `{"POINT":[480,320]}` |
| **Long Press** | `POINT:[x,y]`
`duration:1000` | `duration`,`thought`,`STATUS` | Touch-and-hold at coordinate (set a longer duration, e.g. >200 ms). | `{"POINT":[480,320],"duration":1000}` |
| **Swipe** | `POINT:[x,y]`
`to:"up" \| "down" \| "left" \| "right"` **or** `to:[x,y]` | `duration`,`thought`,`STATUS` | Swipe from the start point toward a direction **or** another coordinate. | `{"POINT":[500,200],"to":"down"}` |
| **Press key** | `PRESS:"HOME" \| "BACK" \| "ENTER"` | `duration`,`thought`,`STATUS` | Trigger a hardware / navigation button. | `{"PRESS":"HOME"}` |
| **Type text** | `TYPE:""` | `duration`,`thought`,`STATUS` | Insert the given text at the current input focus. | `{"TYPE":"Hello, world!"}` |
| **Wait** | `duration` | `thought`,`STATUS` | Idle for the specified time without any other action. | `{"duration":500}` |
| **Task-level status** | `STATUS:"start" \| "continue" \| "finish" \| "satisfied" \| "impossible" \| "interrupt" \| "need_feedback"` | `duration`,`thought` | Report task progress; may appear **alone** or **with a primitive action**. | `{"STATUS":"finish"}` |
## Fine-tuning
Source code for SFT and RFT training is provided — see [GitHub](https://github.com/OpenBMB/AgentCPM-GUI).
## Performance Evaluation
### Grounding Benchmark
| Model | fun2point | text2point | bbox2text | average |
| ------------------------- | -------------- | -------------- | -------------- | -------------- |
| **AgentCPM-GUI-8B** | **79.1** | **76.5** | **58.2** | **71.3** |
| Qwen2.5-VL-7B | 36.8 | 52.0 | 44.1 | 44.3 |
| Intern2.5-VL-8B | 17.2 | 24.2 | 45.9 | 29.1 |
| Intern2.5-VL-26B | 14.8 | 16.6 | 36.3 | 22.6 |
| OS-Genesis-7B | 8.3 | 5.8 | 4.0 | 6.0 |
| UI-TARS-7B | 56.8 | 66.7 | 1.4 | 41.6 |
| OS-Altas-7B | 53.6 | 60.7 | 0.4 | 38.2 |
| Aguvis-7B | 60.8 | **76.5** | 0.2 | 45.8 |
| GPT-4o | 22.1 | 19.9 | 14.3 | 18.8 |
| GPT-4o with Grounding | 44.3 | 44.0 | 14.3 | 44.2 |
### Agent Benchmark
| Dataset | Android Control-Low TM | Android Control-Low EM | Android Control-High TM | Android Control-High EM | GUI-Odyssey TM | GUI-Odyssey EM | AITZ TM | AITZ EM | Chinese APP TM | Chinese APP EM |
| ------------------------- | ---------------------- | ---------------------- | ----------------------- | ----------------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- |
| **AgentCPM-GUI-8B** | **94.39** | **90.20** | **77.70** | **69.17** | **90.85** | **74.96** | **85.71** | **76.38** | **96.86** | **91.28** |
| Qwen2.5-VL-7B | 92.11 | 82.12 | 69.65 | 57.36 | 55.33 | 40.90 | 73.16 | 57.58 | 68.53 | 48.80 |
| UI-TARS-7B | 93.52 | 88.89 | 68.53 | 60.81 | 78.79 | 57.33 | 71.74 | 55.31 | 71.01 | 53.92 |
| OS-Genesis-7B | 90.74 | 74.22 | 65.92 | 44.43 | 11.67 | 3.63 | 19.98 | 8.45 | 38.10 | 14.50 |
| OS-Atlas-7B | 73.03 | 67.25 | 70.36 | 56.53 | 91.83* | 76.76* | 74.13 | 58.45 | 81.53 | 55.89 |
| Aguvis-7B | 93.85 | 89.40 | 65.56 | 54.18 | 26.71 | 13.54 | 35.71 | 18.99 | 67.43 | 38.20 |
| OdysseyAgent-7B | 65.10 | 39.16 | 58.80 | 32.74 | 90.83 | 73.67 | 59.17 | 31.60 | 67.56 | 25.44 |
| GPT-4o | - | 19.49 | - | 20.80 | - | 20.39 | 70.00 | 35.30 | 3.67 | 3.67 |
| Gemini 2.0 | - | 28.50 | - | 60.20 | - | 3.27 | - | - | - | - |
| Claude | - | 19.40 | - | 12.50 | 60.90 | - | - | - | - | - |
> \*Different train/test splits
TM and EM stand for the **Type Match** and **Exact Match**, respectively. All evaluation data and code are open-sourced — see [here](eval) for details.
All evaluation data and code are open-sourced — see [here](https://github.com/OpenBMB/AgentCPM-GUI/tree/main/eval) for details.
## Evaluation Data
We provide **CAGUI**, an evaluation benchmark for Chinese apps covering **grounding** and **agent** tasks.
See the dataset on [Hugging Face](https://huggingface.co/datasets/openbmb/CAGUI).
## License
* Code in this repository is released under the [Apache-2.0](./LICENSE) license.
## Citation
If **AgentCPM-GUI** is useful for your research, please cite:
```bibtex
@misc{2025,
author = {THUNLP},
title = {AgentCPM-GUI},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/OpenBMB/AgentCPM-GUI}}
}
```