add BitCPM4-1B model
Browse files- README.md +94 -0
- added_tokens.json +10 -0
- config.json +37 -0
- configuration_minicpm.py +207 -0
- generation_config.json +12 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +477 -0
- modeling_minicpm.py +0 -0
- special_tokens_map.json +33 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +117 -0
README.md
CHANGED
|
@@ -1,3 +1,97 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- zh
|
| 5 |
+
- en
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
library_name: transformers
|
| 8 |
---
|
| 9 |
+
<div align="center">
|
| 10 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
| 11 |
+
</div>
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
| 15 |
+
<a href="TODO" target="_blank">Technical Report</a>
|
| 16 |
+
</p>
|
| 17 |
+
<p align="center">
|
| 18 |
+
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
| 19 |
+
</p>
|
| 20 |
+
|
| 21 |
+
## What's New
|
| 22 |
+
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report on [arXiv](TODO).🔥🔥🔥
|
| 23 |
+
|
| 24 |
+
## MiniCPM4 Series
|
| 25 |
+
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
| 26 |
+
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
| 27 |
+
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
|
| 28 |
+
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
| 29 |
+
- [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
| 30 |
+
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
| 31 |
+
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width. (**<-- you are here**)
|
| 32 |
+
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
| 33 |
+
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy user requirements.
|
| 34 |
+
|
| 35 |
+
## Introduction
|
| 36 |
+
BitCPM4 are ternary quantized models derived from the MiniCPM series models through quantization-aware training (QAT), achieving significant improvements in both training efficiency and model parameter efficiency.
|
| 37 |
+
- Improvements of the training method
|
| 38 |
+
- Searching hyperparameters with a wind-tunnel on a small model.
|
| 39 |
+
- Using a two-stage training method: training in high-precision first and then QAT, making the best of the trained high-precision models and significantly reducing the computational resources required for the QAT phase.
|
| 40 |
+
- High parameter efficiency
|
| 41 |
+
- Achieving comparable performance to full-precision models of similar parameter models with a bit width of only 1.58 bits, demonstrating high parameter efficiency.
|
| 42 |
+
|
| 43 |
+
## Usage
|
| 44 |
+
### Inference with Transformers
|
| 45 |
+
BitCPM4's parameters are stored in a fake-quantized format, which supports direct inference within the Huggingface framework.
|
| 46 |
+
```
|
| 47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 48 |
+
import torch
|
| 49 |
+
|
| 50 |
+
path = "openbmb/BitCPM4-1B"
|
| 51 |
+
device = "cuda"
|
| 52 |
+
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
| 55 |
+
|
| 56 |
+
messages = [
|
| 57 |
+
{"role": "user", "content": "推荐5个北京的景点。"},
|
| 58 |
+
]
|
| 59 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
| 60 |
+
|
| 61 |
+
model_outputs = model.generate(
|
| 62 |
+
model_inputs,
|
| 63 |
+
max_new_tokens=1024,
|
| 64 |
+
top_p=0.7,
|
| 65 |
+
temperature=0.7
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
output_token_ids = [
|
| 69 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
| 73 |
+
print(responses)
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## Evaluation Results
|
| 77 |
+
BitCPM4's performance is comparable with other full-precision models in same model size.
|
| 78 |
+

|
| 79 |
+
|
| 80 |
+
## Statement
|
| 81 |
+
- As a language model, MiniCPM generates content by learning from a vast amount of text.
|
| 82 |
+
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
| 83 |
+
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
| 84 |
+
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
| 85 |
+
|
| 86 |
+
## LICENSE
|
| 87 |
+
- This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
| 88 |
+
- The usage of MiniCPM model weights must strictly follow [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
| 89 |
+
- The models and weights of MiniCPM are completely free for academic research. after filling out a [questionnaire](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
|
| 90 |
+
|
| 91 |
+
## Citation
|
| 92 |
+
|
| 93 |
+
- Please cite our [paper](TODO) if you find our work valuable.
|
| 94 |
+
|
| 95 |
+
```bibtex
|
| 96 |
+
TODO
|
| 97 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|execute_end|>": 73444,
|
| 3 |
+
"<|execute_start|>": 73443,
|
| 4 |
+
"<|fim_middle|>": 73446,
|
| 5 |
+
"<|fim_prefix|>": 73445,
|
| 6 |
+
"<|fim_suffix|>": 73447,
|
| 7 |
+
"<|im_end|>": 73440,
|
| 8 |
+
"<|im_start|>": 73441,
|
| 9 |
+
"<|tool_call|>": 73442
|
| 10 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "openbmb/MiniCPM4-0.5B",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MiniCPMForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
| 8 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
| 10 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
| 11 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"eos_token_id": [2, 73440],
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 1536,
|
| 17 |
+
"initializer_range": 0.1,
|
| 18 |
+
"intermediate_size": 3840,
|
| 19 |
+
"max_position_embeddings": 32768,
|
| 20 |
+
"num_attention_heads": 24,
|
| 21 |
+
"num_hidden_layers": 52,
|
| 22 |
+
"num_key_value_heads": 8,
|
| 23 |
+
"rms_norm_eps": 1e-05,
|
| 24 |
+
"rope_scaling": {
|
| 25 |
+
"rope_type": "longrope",
|
| 26 |
+
"long_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
|
| 27 |
+
"short_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
|
| 28 |
+
"original_max_position_embeddings": 32768
|
| 29 |
+
},
|
| 30 |
+
"torch_dtype": "bfloat16",
|
| 31 |
+
"transformers_version": "4.46.3",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 73448,
|
| 34 |
+
"scale_emb": 12,
|
| 35 |
+
"dim_model_base": 256,
|
| 36 |
+
"scale_depth": 1.4
|
| 37 |
+
}
|
configuration_minicpm.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 4 |
+
# and OPT implementations in this library. It has been modified from its
|
| 5 |
+
# original forms to accommodate minor architectural differences compared
|
| 6 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 7 |
+
#
|
| 8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 9 |
+
# you may not use this file except in compliance with the License.
|
| 10 |
+
# You may obtain a copy of the License at
|
| 11 |
+
#
|
| 12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 13 |
+
#
|
| 14 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 17 |
+
# See the License for the specific language governing permissions and
|
| 18 |
+
# limitations under the License.
|
| 19 |
+
""" MiniCPM model configuration"""
|
| 20 |
+
|
| 21 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class MiniCPMConfig(PretrainedConfig):
|
| 30 |
+
r"""
|
| 31 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
| 32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 33 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
| 34 |
+
|
| 35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 36 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 41 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
| 42 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
| 43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 44 |
+
Dimension of the hidden representations.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 46 |
+
Dimension of the MLP representations.
|
| 47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of hidden layers in the Transformer decoder.
|
| 49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 51 |
+
num_key_value_heads (`int`, *optional*):
|
| 52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 58 |
+
`num_attention_heads`.
|
| 59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 60 |
+
The non-linear activation function (function or string) in the decoder.
|
| 61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 62 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
| 63 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 67 |
+
The epsilon used by the rms normalization layers.
|
| 68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 70 |
+
relevant if `config.is_decoder=True`.
|
| 71 |
+
pad_token_id (`int`, *optional*):
|
| 72 |
+
Padding token id.
|
| 73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 74 |
+
Beginning of stream token id.
|
| 75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 76 |
+
End of stream token id.
|
| 77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 79 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 80 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 83 |
+
Whether to tie weight embeddings
|
| 84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 85 |
+
The base period of the RoPE embeddings.
|
| 86 |
+
rope_scaling (`Dict`, *optional*):
|
| 87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 88 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 89 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 90 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 91 |
+
these scaling strategies behave:
|
| 92 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 93 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 94 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 95 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 96 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 97 |
+
The dropout ratio for the attention probabilities.
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
| 101 |
+
|
| 102 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
| 103 |
+
>>> configuration = MiniCPMConfig()
|
| 104 |
+
|
| 105 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
| 106 |
+
>>> model = MiniCPMModel(configuration)
|
| 107 |
+
|
| 108 |
+
>>> # Accessing the model configuration
|
| 109 |
+
>>> configuration = model.config
|
| 110 |
+
```"""
|
| 111 |
+
|
| 112 |
+
model_type = 'minicpm'
|
| 113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 114 |
+
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
vocab_size=32000,
|
| 118 |
+
hidden_size=4096,
|
| 119 |
+
intermediate_size=11008,
|
| 120 |
+
num_hidden_layers=32,
|
| 121 |
+
num_attention_heads=32,
|
| 122 |
+
num_key_value_heads=None,
|
| 123 |
+
hidden_act='silu',
|
| 124 |
+
max_position_embeddings=2048,
|
| 125 |
+
initializer_range=0.02,
|
| 126 |
+
rms_norm_eps=1e-6,
|
| 127 |
+
use_cache=True,
|
| 128 |
+
pad_token_id=None,
|
| 129 |
+
bos_token_id=1,
|
| 130 |
+
eos_token_id=2,
|
| 131 |
+
pretraining_tp=1,
|
| 132 |
+
tie_word_embeddings=True,
|
| 133 |
+
rope_theta=10000.0,
|
| 134 |
+
rope_scaling=None,
|
| 135 |
+
attention_bias=False,
|
| 136 |
+
attention_dropout=0.0,
|
| 137 |
+
scale_emb=1,
|
| 138 |
+
dim_model_base=1,
|
| 139 |
+
scale_depth=1,
|
| 140 |
+
mup_denominator=None,
|
| 141 |
+
sparse_config=None,
|
| 142 |
+
**kwargs):
|
| 143 |
+
|
| 144 |
+
self.vocab_size = vocab_size
|
| 145 |
+
self.max_position_embeddings = max_position_embeddings
|
| 146 |
+
self.hidden_size = hidden_size
|
| 147 |
+
self.intermediate_size = intermediate_size
|
| 148 |
+
self.num_hidden_layers = num_hidden_layers
|
| 149 |
+
self.num_attention_heads = num_attention_heads
|
| 150 |
+
|
| 151 |
+
# for backward compatibility
|
| 152 |
+
if num_key_value_heads is None:
|
| 153 |
+
num_key_value_heads = num_attention_heads
|
| 154 |
+
|
| 155 |
+
self.num_key_value_heads = num_key_value_heads
|
| 156 |
+
self.hidden_act = hidden_act
|
| 157 |
+
self.initializer_range = initializer_range
|
| 158 |
+
self.rms_norm_eps = rms_norm_eps
|
| 159 |
+
self.pretraining_tp = pretraining_tp
|
| 160 |
+
self.use_cache = use_cache
|
| 161 |
+
self.rope_theta = rope_theta
|
| 162 |
+
self.rope_scaling = rope_scaling
|
| 163 |
+
# self._rope_scaling_validation()
|
| 164 |
+
self.attention_bias = attention_bias
|
| 165 |
+
self.attention_dropout = attention_dropout
|
| 166 |
+
self.scale_emb = scale_emb
|
| 167 |
+
self.dim_model_base = dim_model_base
|
| 168 |
+
self.scale_depth = scale_depth
|
| 169 |
+
# only used for Eagle Head
|
| 170 |
+
self.mup_denominator = mup_denominator
|
| 171 |
+
|
| 172 |
+
# sparse config
|
| 173 |
+
self.sparse_config = sparse_config
|
| 174 |
+
|
| 175 |
+
super().__init__(
|
| 176 |
+
pad_token_id=pad_token_id,
|
| 177 |
+
bos_token_id=bos_token_id,
|
| 178 |
+
eos_token_id=eos_token_id,
|
| 179 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 180 |
+
**kwargs,
|
| 181 |
+
)
|
| 182 |
+
try:
|
| 183 |
+
import flash_attn
|
| 184 |
+
self._attn_implementation = 'flash_attention_2'
|
| 185 |
+
except:
|
| 186 |
+
pass
|
| 187 |
+
|
| 188 |
+
def _rope_scaling_validation(self):
|
| 189 |
+
"""
|
| 190 |
+
Validate the `rope_scaling` configuration.
|
| 191 |
+
"""
|
| 192 |
+
if self.rope_scaling is None:
|
| 193 |
+
return
|
| 194 |
+
|
| 195 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 198 |
+
f'got {self.rope_scaling}'
|
| 199 |
+
)
|
| 200 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 201 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 202 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 203 |
+
raise ValueError(
|
| 204 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 205 |
+
)
|
| 206 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 207 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
2,
|
| 6 |
+
73440
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 2,
|
| 9 |
+
"temperature": 0.8,
|
| 10 |
+
"top_p": 0.8,
|
| 11 |
+
"transformers_version": "4.46.1"
|
| 12 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:905e6716227a0dfbb85e2ea8a0550a43a312b9fd516759800cee44b4d7decaed
|
| 3 |
+
size 4986458112
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d4f00c6cbd5a0c7e34c44ec16becffa8657bd05ce36b93a529f63f85e19567d
|
| 3 |
+
size 454630016
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 5441034240
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.32.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.32.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.32.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.33.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.33.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.33.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.34.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.34.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.34.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.35.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.35.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.35.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.36.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.36.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.36.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.37.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.37.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.37.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.38.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.38.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 297 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"model.layers.38.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 299 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 304 |
+
"model.layers.39.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 305 |
+
"model.layers.39.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"model.layers.39.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.40.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"model.layers.40.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.40.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 327 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 330 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 331 |
+
"model.layers.41.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"model.layers.41.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 333 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"model.layers.41.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 335 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 337 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"model.layers.42.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"model.layers.42.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.layers.42.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"model.layers.43.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"model.layers.43.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.layers.43.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"model.layers.44.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"model.layers.44.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 361 |
+
"model.layers.44.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 365 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 367 |
+
"model.layers.45.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.45.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.45.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.46.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.46.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.46.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.47.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 386 |
+
"model.layers.47.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 387 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 388 |
+
"model.layers.47.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 389 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 390 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.48.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 395 |
+
"model.layers.48.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 396 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 397 |
+
"model.layers.48.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 398 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 399 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 400 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 401 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 402 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 403 |
+
"model.layers.49.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 404 |
+
"model.layers.49.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 405 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 406 |
+
"model.layers.49.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 407 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 408 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 409 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 410 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 411 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 412 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.50.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 422 |
+
"model.layers.50.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 423 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 424 |
+
"model.layers.50.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 425 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 426 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 427 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 428 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 429 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 430 |
+
"model.layers.51.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 431 |
+
"model.layers.51.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 432 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 433 |
+
"model.layers.51.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 434 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 435 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 436 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 437 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 438 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 439 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 451 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 454 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 457 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 459 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 461 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 463 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 465 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 467 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 469 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 471 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 473 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 475 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 476 |
+
}
|
| 477 |
+
}
|
modeling_minicpm.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_end|>",
|
| 4 |
+
"<|im_start|>",
|
| 5 |
+
"<|tool_call|>",
|
| 6 |
+
"<|execute_start|>",
|
| 7 |
+
"<|execute_end|>",
|
| 8 |
+
"<|fim_prefix|>",
|
| 9 |
+
"<|fim_middle|>",
|
| 10 |
+
"<|fim_suffix|>"
|
| 11 |
+
],
|
| 12 |
+
"bos_token": {
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"content": "<|im_end|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
|
| 3 |
+
size 1181204
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"73440": {
|
| 31 |
+
"content": "<|im_end|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"73441": {
|
| 39 |
+
"content": "<|im_start|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"73442": {
|
| 47 |
+
"content": "<|tool_call|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"73443": {
|
| 55 |
+
"content": "<|execute_start|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"73444": {
|
| 63 |
+
"content": "<|execute_end|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"73445": {
|
| 71 |
+
"content": "<|fim_prefix|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"73446": {
|
| 79 |
+
"content": "<|fim_middle|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"73447": {
|
| 87 |
+
"content": "<|fim_suffix|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
}
|
| 94 |
+
},
|
| 95 |
+
"additional_special_tokens": [
|
| 96 |
+
"<|im_end|>",
|
| 97 |
+
"<|im_start|>",
|
| 98 |
+
"<|tool_call|>",
|
| 99 |
+
"<|execute_start|>",
|
| 100 |
+
"<|execute_end|>",
|
| 101 |
+
"<|fim_prefix|>",
|
| 102 |
+
"<|fim_middle|>",
|
| 103 |
+
"<|fim_suffix|>"
|
| 104 |
+
],
|
| 105 |
+
"bos_token": "<s>",
|
| 106 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 107 |
+
"clean_up_tokenization_spaces": false,
|
| 108 |
+
"eos_token": "<|im_end|>",
|
| 109 |
+
"legacy": true,
|
| 110 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 111 |
+
"pad_token": null,
|
| 112 |
+
"sp_model_kwargs": {},
|
| 113 |
+
"spaces_between_special_tokens": false,
|
| 114 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 115 |
+
"unk_token": "<unk>",
|
| 116 |
+
"use_default_system_prompt": false
|
| 117 |
+
}
|