Add link to paper and mention it in the description
Browse filesThis PR improves the model card by adding a link to the paper and mentioning the paper in the description.
README.md
CHANGED
@@ -1,196 +1,538 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
---
|
9 |
-
|
10 |
-
<
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
<
|
15 |
-
<a href="https://github.com/OpenBMB/MiniCPM
|
16 |
-
</
|
17 |
-
<
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
##
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
- [MiniCPM4-8B
|
32 |
-
- [MiniCPM4-
|
33 |
-
- [
|
34 |
-
- [
|
35 |
-
- [MiniCPM4-
|
36 |
-
- [MiniCPM4-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
- **
|
49 |
-
|
50 |
-
- **
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
###
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
```
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
```
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
104 |
-
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
##
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
###
|
154 |
-
从
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
```
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
```
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
191 |
-
|
192 |
-
|
|
193 |
-
|
|
194 |
-
|
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
license: apache-2.0
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
|
10 |
+
<div align="center">
|
11 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
12 |
+
</div>
|
13 |
+
|
14 |
+
<p align="center">
|
15 |
+
<a href="https://github.com/OpenBMB/MiniCPM/\" target="_blank">GitHub Repo</a> |
|
16 |
+
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a> |
|
17 |
+
<a href="https://huggingface.co/papers/2506.07900" target="_blank">Paper</a>
|
18 |
+
</p>
|
19 |
+
<p align="center">
|
20 |
+
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
21 |
+
</p>
|
22 |
+
|
23 |
+
This repository contains the model described in the paper [MiniCPM4: Ultra-Efficient LLMs on End Devices](https://huggingface.co/papers/2506.07900).
|
24 |
+
|
25 |
+
## What's New
|
26 |
+
|
27 |
+
* [2025-06-05] 🚀🚀🚀 We have open-sourced **MiniCPM4-Survey**, a model built upon MiniCPM4-8B that is capable of generating trustworthy, long-form survey papers while maintaining competitive performance relative to significantly larger models.
|
28 |
+
|
29 |
+
## MiniCPM4 Series
|
30 |
+
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
31 |
+
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
32 |
+
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
|
33 |
+
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
34 |
+
- [MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
35 |
+
- [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
36 |
+
- [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
37 |
+
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
38 |
+
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
39 |
+
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers. (**<-- you are here**)
|
40 |
+
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
|
41 |
+
|
42 |
+
## Overview
|
43 |
+
|
44 |
+
**MiniCPM4-Survey** is an open-source LLM agent model jointly developed by [THUNLP](https://nlp.csai.tsinghua.edu.cn), Renmin University of China and [ModelBest](https://modelbest.cn/en). Built on [MiniCPM4](https://github.com/OpenBMB/MiniCPM4) with 8 billion parameters, it accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
45 |
+
|
46 |
+
Key features include:
|
47 |
+
|
48 |
+
- **Plan-Retrieve-Write Survey Generation Framework** — We propose a multi-agent generation framework, which operates through three core stages: planning (defining the overall structure of the survey), retrieval (generating appropriate retrieval keywords), and writing (synthesizing the retrieved information to generate coherent section-level content).
|
49 |
+
|
50 |
+
- **High-Quality Dataset Construction** — We gather and process lots of expert-written survey papers to construct a high-quality training dataset. Meanwhile, we collect a large number of research papers to build a retrieval database.
|
51 |
+
|
52 |
+
- **Multi-Aspect Reward Design** — We carefully design a reward system with three aspects (structure, content, and citations) to evaluate the quality of the surveys, which is used as the reward function in the RL training stage.
|
53 |
+
|
54 |
+
- **Multi-Step RL Training Strategy** — We propose a *Context Manager* to ensure retention of essential information while facilitating efficient reasoning, and we construct *Parallel Environment* to maintain efficient RL training cycles.
|
55 |
+
|
56 |
+
|
57 |
+
## Quick Start
|
58 |
+
|
59 |
+
### Download the model
|
60 |
+
|
61 |
+
Download [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey) from Hugging Face and place it in `model/MiniCPM4-Survey`.
|
62 |
+
We recommend using [MiniCPM-Embedding-Light](https://huggingface.co/openbmb/MiniCPM-Embedding-Light) as the embedding model, which can be downloaded from Hugging Face and placed in `model/MiniCPM-Embedding-Light`.
|
63 |
+
### Perpare the environment
|
64 |
+
|
65 |
+
You can download the [paper data](https://www.kaggle.com/datasets/Cornell-University/arxiv) from Kaggle, then extract it. You can run `python data_process.py` to process the data and generate the retrieval database. Then you can run `python build_index.py` to build the retrieval database.
|
66 |
+
|
67 |
+
```
|
68 |
+
cd ./code
|
69 |
+
curl -L -o ~/Downloads/arxiv.zip\
|
70 |
+
https://www.kaggle.com/api/v1/datasets/download/Cornell-University/arxiv
|
71 |
+
unzip ~/Downloads/arxiv.zip -d .
|
72 |
+
mkdir data
|
73 |
+
python ./src/preprocess/data_process.py
|
74 |
+
mkdir index
|
75 |
+
python ./src/preprocess/build_index.py
|
76 |
+
```
|
77 |
+
|
78 |
+
### Model Inference
|
79 |
+
|
80 |
+
You can run the following command to build the retrieval environment and start the inference:
|
81 |
+
|
82 |
+
```bash
|
83 |
+
cd ./code
|
84 |
+
python ./src/retriever.py
|
85 |
+
bash ./scripts/run.sh
|
86 |
+
```
|
87 |
+
|
88 |
+
If you want to run with the frontend, you can run the following command:
|
89 |
+
|
90 |
+
```bash
|
91 |
+
cd ./code
|
92 |
+
python ./src/retriever.py
|
93 |
+
bash ./scripts/run_with_frontend.sh
|
94 |
+
cd frontend/minicpm4-survey
|
95 |
+
npm install
|
96 |
+
npm run dev
|
97 |
+
```
|
98 |
+
|
99 |
+
Then you can visit `http://localhost:5173` in your browser to use the model.
|
100 |
+
|
101 |
+
## Performance Evaluation
|
102 |
+
|
103 |
+
| Method | Relevance | Coverage | Depth | Novelty | Avg. | Fact Score |
|
104 |
+
|---------------------------------------------|-----------|----------|-------|---------|-------|------------|
|
105 |
+
| Naive RAG (driven by G2FT) | 3.25 | 2.95 | 3.35 | 2.60 | 3.04 | 43.68 |
|
106 |
+
| AutoSurvey (driven by G2FT) | 3.10 | 3.25 | 3.15 | **3.15**| 3.16 | 46.56 |
|
107 |
+
| Webthinker (driven by WTR1-7B) | 3.30 | 3.00 | 2.75 | 2.50 | 2.89 | -- |
|
108 |
+
| Webthinker (driven by QwQ-32B) | 3.40 | 3.30 | 3.30 | 2.50 | 3.13 | -- |
|
109 |
+
| OpenAI Deep Research (driven by GPT-4o) | 3.50 |**3.95** | 3.55 | 3.00 | **3.50** | -- |
|
110 |
+
| MiniCPM4-Survey | 3.45 | 3.70 | **3.85** | 3.00 | **3.50** | **68.73** |
|
111 |
+
| *w/o* RL | **3.55** | 3.35 | 3.30 | 2.25 | 3.11 | 50.24 |
|
112 |
+
|
113 |
+
*Performance comparison of the survey generation systems. "G2FT" stands for Gemini-2.0-Flash-Thinking, and "WTR1-7B" denotes Webthinker-R1-7B. FactScore evaluation was omitted for Webthinker, as it does not include citation functionality, and for OpenAI Deep Research, which does not provide citations when exporting the results.*
|
114 |
+
|
115 |
+
## Statement
|
116 |
+
- As a language model, MiniCPM generates content by learning from a vast amount of text.
|
117 |
+
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
118 |
+
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
119 |
+
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
120 |
+
|
121 |
+
## LICENSE
|
122 |
+
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
123 |
+
|
124 |
+
## Citation
|
125 |
+
- Please cite our [paper](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf) if you find our work valuable.
|
126 |
+
|
127 |
+
```bibtex
|
128 |
+
@article{minicpm4,
|
129 |
+
title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
|
130 |
+
author={MiniCPM Team},
|
131 |
+
year={2025}
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
135 |
+
# 中文
|
136 |
+
## News
|
137 |
+
|
138 |
+
* [2025-06-05] 🚀🚀🚀我们开源了基于MiniCPM4-8B构建的MiniCPM4-Survey,能够生成可信的长篇调查报告,性能比肩更大模型。
|
139 |
+
|
140 |
+
## 概览
|
141 |
+
|
142 |
+
MiniCPM4-Survey是由[THUNLP](https://nlp.csai.tsinghua.edu.cn)、中国人民大学和[ModelBest](https://modelbest.cn)联合开发的开源大语言模型智能体。它基于[MiniCPM4](https://github.com/OpenBMB/MiniCPM4) 80亿参数基座模型,接受用户质量作为输入,自主生成可信的长篇综述论文。
|
143 |
+
|
144 |
+
主要特性包括:
|
145 |
+
- 计划-检索-写作生成框架 — 我们提出了一个多智能体生成框架,包含三个核心阶段:计划(定义综述的整体结构)、检索(生成合适的检索关键词)和写作(利用检索到的信息,生成连贯的段落)。
|
146 |
+
- 高质量数据集构建——我们收集并处理大量人类专家写作的综述论文,构建高质量训练集。同时,我们收集大量研究论文,构建检索数据库。
|
147 |
+
- 多方面奖励设计 — 我们精心设计了包含结构、内容和引用的奖励,用于评估综述的质量,在强化学习训练阶段作奖励函数。
|
148 |
+
- 多步强化学习训练策略 — 我们提出了一个上下文管理器,以确保在促进有效推理的同时保留必要的信息,并构建了并行环境,维持强化学习训练高效。
|
149 |
+
|
150 |
+
|
151 |
+
## 使用
|
152 |
+
|
153 |
+
### 下载模型
|
154 |
+
从 Hugging Face 下载[MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey)并将其放在model/MiniCPM4-Survey中。
|
155 |
+
我们建议使用[MiniCPM-Embedding-Light](https://huggingface.co/openbmb/MiniCPM-Embedding-Light)作为表征模型,放在model/MiniCPM-Embedding-Light中。
|
156 |
+
|
157 |
+
### 准备环境
|
158 |
+
从 Kaggle 下载论文数据,然后解压。运行`python data_process.py`,处理数据并生成检索数据库。然后运行`python build_index.py`,构建检索数据库。
|
159 |
+
``` bash
|
160 |
+
cd ./code
|
161 |
+
curl -L -o ~/Downloads/arxiv.zip\
|
162 |
+
https://www.kaggle.com/api/v1/datasets/download/Cornell-University/arxiv
|
163 |
+
unzip ~/Downloads/arxiv.zip -d .
|
164 |
+
mkdir data
|
165 |
+
python ./src/preprocess/data_process.py
|
166 |
+
mkdir index
|
167 |
+
python ./src/preprocess/build_index.py
|
168 |
+
```
|
169 |
+
|
170 |
+
### 模型推理
|
171 |
+
运行以下命令来构建检索环境并开始推理:
|
172 |
+
``` bash
|
173 |
+
cd ./code
|
174 |
+
python ./src/retriever.py
|
175 |
+
bash ./scripts/run.sh
|
176 |
+
```
|
177 |
+
如果您想使用前端运行,可以运行以下命令:
|
178 |
+
``` bash
|
179 |
+
cd ./code
|
180 |
+
python ./src/retriever.py
|
181 |
+
bash ./scripts/run_with_frontend.sh
|
182 |
+
cd frontend/minicpm4-survey
|
183 |
+
npm install
|
184 |
+
npm run dev
|
185 |
+
```
|
186 |
+
然后你可以在浏览器中访问`http://localhost:5173`使用。
|
187 |
+
|
188 |
+
## 性能
|
189 |
+
|
190 |
+
| Method | Relevance | Coverage | Depth | Novelty | Avg. | Fact Score |
|
191 |
+
|---------------------------------------------|-----------|----------|-------|---------|-------|------------|
|
192 |
+
| Naive RAG (driven by G2FT) | 3.25 | 2.95 | 3.35 | 2.60 | 3.04 | 43.68 |
|
193 |
+
| AutoSurvey (driven by G2FT) | 3.10 | 3.25 | 3.15 | **3.15**| 3.16 | 46.56 |
|
194 |
+
| Webthinker (driven by WTR1-7B) | 3.30 | 3.00 | 2.75 | 2.50 | 2.89 | -- |
|
195 |
+
| Webthinker (driven by QwQ-32B) | 3.40 | 3.30 | 3.30 | 2.50 | 3.13 | -- |
|
196 |
+
| OpenAI Deep Research (driven by GPT-4o) | 3.50 |**3.95** | 3.55 | 3.00 | **3.50** | -- |
|
197 |
+
| MiniCPM4-Survey | 3.45 | 3.70 | **3.85** | 3.00 | **3.50** | **68.73** |
|
198 |
+
| *w/o* RL | **3.55** | 3.35 | 3.30 | 2.25 | 3.11 | 50.24 |
|
199 |
+
|
200 |
+
*GPT-4o对综述生成系统的性能比较。“G2FT”代表Gemini-2.0-Flash-Thinking,“WTR1-7B”代表Webthinker-R1-7B。由于Webthinker不包括引用功能,OpenAI Deep Research在导出结果时不提供引用,因此省略了对它们的FactScore评估。我们的技术报告中包含评测的详细信息。*
|
201 |
+
|
202 |
+
# File information
|
203 |
+
|
204 |
+
The repository contains the following file information:
|
205 |
+
|
206 |
+
Filename: generation_config.json
|
207 |
+
Content: {
|
208 |
+
"bos_token_id": 1,
|
209 |
+
"do_sample": true,
|
210 |
+
"eos_token_id": [
|
211 |
+
2,
|
212 |
+
73440
|
213 |
+
],
|
214 |
+
"pad_token_id": 2,
|
215 |
+
"temperature": 0.8,
|
216 |
+
"top_p": 0.8,
|
217 |
+
"transformers_version": "4.46.1"
|
218 |
+
}
|
219 |
+
|
220 |
+
Filename: config.json
|
221 |
+
Content: {
|
222 |
+
"_name_or_path": "openbmb/MiniCPM4-8B",
|
223 |
+
"architectures": [
|
224 |
+
"MiniCPMForCausalLM"
|
225 |
+
],
|
226 |
+
"auto_map": {
|
227 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
228 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
229 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
230 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
231 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
232 |
+
},
|
233 |
+
"bos_token_id": 1,
|
234 |
+
"eos_token_id": [
|
235 |
+
2,
|
236 |
+
73440
|
237 |
+
],
|
238 |
+
"pad_token_id": 2,
|
239 |
+
"hidden_act": "silu",
|
240 |
+
"hidden_size": 4096,
|
241 |
+
"initializer_range": 0.1,
|
242 |
+
"intermediate_size": 16384,
|
243 |
+
"max_position_embeddings": 32768,
|
244 |
+
"model_type": "minicpm",
|
245 |
+
"num_attention_heads": 32,
|
246 |
+
"num_hidden_layers": 32,
|
247 |
+
"num_key_value_heads": 2,
|
248 |
+
"rms_norm_eps": 1e-06,
|
249 |
+
"rope_scaling": {
|
250 |
+
"rope_type": "longrope",
|
251 |
+
"long_factor": [
|
252 |
+
0.9977997200264581,
|
253 |
+
1.014658295992452,
|
254 |
+
1.0349680404997148,
|
255 |
+
1.059429246056193,
|
256 |
+
1.0888815016813513,
|
257 |
+
1.1243301355211495,
|
258 |
+
1.166977103606075,
|
259 |
+
1.2182568066927284,
|
260 |
+
1.2798772354275727,
|
261 |
+
1.3538666751582975,
|
262 |
+
1.4426259039919596,
|
263 |
+
1.5489853358570191,
|
264 |
+
1.6762658237220625,
|
265 |
+
1.8283407612492941,
|
266 |
+
2.0096956085876183,
|
267 |
+
2.225478927469756,
|
268 |
+
2.481536379650452,
|
269 |
+
2.784415934557119,
|
270 |
+
3.1413289096347365,
|
271 |
+
3.560047844772632,
|
272 |
+
4.048719380066383,
|
273 |
+
4.615569542115128,
|
274 |
+
5.2684819496549835,
|
275 |
+
6.014438591970396,
|
276 |
+
6.858830049237097,
|
277 |
+
7.804668263503327,
|
278 |
+
8.851768731513417,
|
279 |
+
9.99600492938444,
|
280 |
+
11.228766118181639,
|
281 |
+
12.536757560834843,
|
282 |
+
13.902257701387796,
|
283 |
+
15.303885189125953,
|
284 |
+
16.717837610115794,
|
285 |
+
18.119465097853947,
|
286 |
+
19.484965238406907,
|
287 |
+
20.792956681060105,
|
288 |
+
22.02571786985731,
|
289 |
+
23.16995406772833,
|
290 |
+
24.217054535738416,
|
291 |
+
25.16289275000465,
|
292 |
+
26.007284207271347,
|
293 |
+
26.753240849586767,
|
294 |
+
27.40615325712662,
|
295 |
+
27.973003419175363,
|
296 |
+
28.461674954469114,
|
297 |
+
28.880393889607006,
|
298 |
+
29.237306864684626,
|
299 |
+
29.540186419591297,
|
300 |
+
29.79624387177199,
|
301 |
+
30.01202719065413,
|
302 |
+
30.193382037992453,
|
303 |
+
30.34545697551969,
|
304 |
+
30.47273746338473,
|
305 |
+
30.579096895249787,
|
306 |
+
30.66785612408345,
|
307 |
+
30.741845563814174,
|
308 |
+
30.80346599254902,
|
309 |
+
30.85474569563567,
|
310 |
+
30.897392663720595,
|
311 |
+
30.932841297560394,
|
312 |
+
30.962293553185553,
|
313 |
+
30.986754758742034,
|
314 |
+
31.007064503249293,
|
315 |
+
31.02392307921529
|
316 |
+
],
|
317 |
+
"short_factor": [
|
318 |
+
0.9977997200264581,
|
319 |
+
1.014658295992452,
|
320 |
+
1.0349680404997148,
|
321 |
+
1.059429246056193,
|
322 |
+
1.0888815016813513,
|
323 |
+
1.1243301355211495,
|
324 |
+
1.166977103606075,
|
325 |
+
1.2182568066927284,
|
326 |
+
1.2798772354275727,
|
327 |
+
1.3538666751582975,
|
328 |
+
1.4426259039919596,
|
329 |
+
1.5489853358570191,
|
330 |
+
1.6762658237220625,
|
331 |
+
1.8283407612492941,
|
332 |
+
2.0096956085876183,
|
333 |
+
2.225478927469756,
|
334 |
+
2.481536379650452,
|
335 |
+
2.784415934557119,
|
336 |
+
3.1413289096347365,
|
337 |
+
3.560047844772632,
|
338 |
+
4.048719380066383,
|
339 |
+
4.615569542115128,
|
340 |
+
5.2684819496549835,
|
341 |
+
6.014438591970396,
|
342 |
+
6.858830049237097,
|
343 |
+
7.804668263503327,
|
344 |
+
8.851768731513417,
|
345 |
+
9.99600492938444,
|
346 |
+
11.228766118181639,
|
347 |
+
12.536757560834843,
|
348 |
+
13.902257701387796,
|
349 |
+
15.303885189125953,
|
350 |
+
16.717837610115794,
|
351 |
+
18.119465097853947,
|
352 |
+
19.484965238406907,
|
353 |
+
20.792956681060105,
|
354 |
+
22.02571786985731,
|
355 |
+
23.16995406772833,
|
356 |
+
24.217054535738416,
|
357 |
+
25.16289275000465,
|
358 |
+
26.007284207271347,
|
359 |
+
26.753240849586767,
|
360 |
+
27.40615325712662,
|
361 |
+
27.973003419175363,
|
362 |
+
28.461674954469114,
|
363 |
+
28.880393889607006,
|
364 |
+
29.237306864684626,
|
365 |
+
29.540186419591297,
|
366 |
+
29.79624387177199,
|
367 |
+
30.01202719065413,
|
368 |
+
30.193382037992453,
|
369 |
+
30.34545697551969,
|
370 |
+
30.47273746338473,
|
371 |
+
30.579096895249787,
|
372 |
+
30.66785612408345,
|
373 |
+
30.741845563814174,
|
374 |
+
30.80346599254902,
|
375 |
+
30.85474569563567,
|
376 |
+
30.897392663720595,
|
377 |
+
30.932841297560394,
|
378 |
+
30.962293553185553,
|
379 |
+
30.986754758742034,
|
380 |
+
31.007064503249293,
|
381 |
+
31.02392307921529
|
382 |
+
],
|
383 |
+
"original_max_position_embeddings": 32768
|
384 |
+
}
|
385 |
+
}
|
386 |
+
|
387 |
+
Filename: added_tokens.json
|
388 |
+
Content: {
|
389 |
+
"<|execute_end|>": 73444,
|
390 |
+
"<|execute_start|>": 73443,
|
391 |
+
"<|fim_middle|>": 73446,
|
392 |
+
"<|fim_prefix|>": 73445,
|
393 |
+
"<|fim_suffix|>": 73447,
|
394 |
+
"<|im_end|>": 73440,
|
395 |
+
"<|im_start|>": 73441,
|
396 |
+
"<|tool_call|>": 73442
|
397 |
+
}
|
398 |
+
|
399 |
+
Filename: special_tokens_map.json
|
400 |
+
Content: {
|
401 |
+
"additional_special_tokens": [
|
402 |
+
"<|im_end|>",
|
403 |
+
"<|im_start|>",
|
404 |
+
"<|tool_call|>",
|
405 |
+
"<|execute_start|>",
|
406 |
+
"<|execute_end|>",
|
407 |
+
"<|fim_prefix|>",
|
408 |
+
"<|fim_middle|>",
|
409 |
+
"<|fim_suffix|>"
|
410 |
+
],
|
411 |
+
"bos_token": {
|
412 |
+
"content": "<s>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false
|
417 |
+
},
|
418 |
+
"eos_token": {
|
419 |
+
"content": "<|im_end|>",
|
420 |
+
"lstrip": false,
|
421 |
+
"normalized": false,
|
422 |
+
"rstrip": false,
|
423 |
+
"single_word": false
|
424 |
+
},
|
425 |
+
"unk_token": {
|
426 |
+
"content": "<unk>",
|
427 |
+
"lstrip": false,
|
428 |
+
"normalized": false,
|
429 |
+
"rstrip": false,
|
430 |
+
"single_word": false
|
431 |
+
}
|
432 |
+
}
|
433 |
+
|
434 |
+
Filename: model.safetensors.index.json
|
435 |
+
Content: Content of the file is larger than 50 KB, too long to display.
|
436 |
+
|
437 |
+
Filename: tokenizer.json
|
438 |
+
Content: Content of the file is larger than 50 KB, too long to display.
|
439 |
+
|
440 |
+
Filename: tokenizer_config.json
|
441 |
+
Content: {
|
442 |
+
"add_bos_token": true,
|
443 |
+
"add_eos_token": false,
|
444 |
+
"add_prefix_space": null,
|
445 |
+
"added_tokens_decoder": {
|
446 |
+
"0": {
|
447 |
+
"content": "<unk>",
|
448 |
+
"lstrip": false,
|
449 |
+
"normalized": false,
|
450 |
+
"rstrip": false,
|
451 |
+
"single_word": false,
|
452 |
+
"special": true
|
453 |
+
},
|
454 |
+
"1": {
|
455 |
+
"content": "<s>",
|
456 |
+
"lstrip": false,
|
457 |
+
"normalized": false,
|
458 |
+
"rstrip": false,
|
459 |
+
"single_word": false,
|
460 |
+
"special": true
|
461 |
+
},
|
462 |
+
"2": {
|
463 |
+
"content": "</s>",
|
464 |
+
"lstrip": false,
|
465 |
+
"normalized": false,
|
466 |
+
"rstrip": false,
|
467 |
+
"single_word": false,
|
468 |
+
"special": true
|
469 |
+
},
|
470 |
+
"73440": {
|
471 |
+
"content": "<|im_end|>",
|
472 |
+
"lstrip": false,
|
473 |
+
"normalized": false,
|
474 |
+
"rstrip": false,
|
475 |
+
"single_word": false,
|
476 |
+
"special": true
|
477 |
+
},
|
478 |
+
"73441": {
|
479 |
+
"content": "<|im_start|>",
|
480 |
+
"lstrip": false,
|
481 |
+
"normalized": false,
|
482 |
+
"rstrip": false,
|
483 |
+
"single_word": false,
|
484 |
+
"special": true
|
485 |
+
},
|
486 |
+
"73442": {
|
487 |
+
"content": "<|tool_call|>",
|
488 |
+
"lstrip": false,
|
489 |
+
"normalized": false,
|
490 |
+
"rstrip": false,
|
491 |
+
"single_word": false,
|
492 |
+
"special": true
|
493 |
+
},
|
494 |
+
"73443": {
|
495 |
+
"content": "<|execute_start|>",
|
496 |
+
"lstrip": false,
|
497 |
+
"normalized": false,
|
498 |
+
"rstrip": false,
|
499 |
+
"single_word": false,
|
500 |
+
"special": true
|
501 |
+
},
|
502 |
+
"73444": {
|
503 |
+
"content": "<|execute_end|>",
|
504 |
+
"lstrip": false,
|
505 |
+
"normalized": false,
|
506 |
+
"rstrip": false,
|
507 |
+
"single_word": false,
|
508 |
+
"special": true
|
509 |
+
},
|
510 |
+
"73445": {
|
511 |
+
"content": "<|fim_prefix|>",
|
512 |
+
"lstrip": false,
|
513 |
+
"normalized": false,
|
514 |
+
"rstrip": false,
|
515 |
+
"single_word": false,
|
516 |
+
"special": true
|
517 |
+
},
|
518 |
+
"73446": {
|
519 |
+
"content": "<|fim_middle|>",
|
520 |
+
"lstrip": false,
|
521 |
+
"normalized": false,
|
522 |
+
"rstrip": false,
|
523 |
+
"single_word": false,
|
524 |
+
"special": true
|
525 |
+
},
|
526 |
+
"73447": {
|
527 |
+
"content": "<|fim_suffix|>",
|
528 |
+
"lstrip": false,
|
529 |
+
"normalized": false,
|
530 |
+
"rstrip": false,
|
531 |
+
"single_word": false,
|
532 |
+
"special": true
|
533 |
+
}
|
534 |
+
},
|
535 |
+
"additional_special_tokens": [
|
536 |
+
"<|im_end|>",
|
537 |
+
"<|im_start|>",
|
538 |
+
"<|tool_call
|