guanwenyu1995 commited on
Commit
073d7e5
Β·
verified Β·
1 Parent(s): f276ba9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -9
README.md CHANGED
@@ -10,6 +10,64 @@ library_name: transformers
10
  <img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
11
  </div>
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Usage
14
  ### Prebuilt [mlx-lm](https://github.com/ml-explore/mlx-lm.git)
15
  ```bash
@@ -35,12 +93,3 @@ response = generate(
35
  )
36
  print(response)
37
  ```
38
-
39
- <p align="center">
40
- <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
41
- <a href="https://arxiv.org/abs/2506.07900" target="_blank">Technical Report</a> |
42
- <a href="https://mp.weixin.qq.com/s/KIhH2nCURBXuFXAtYRpuXg?poc_token=HBIsUWijxino8oJ5s6HcjcfXFRi0Xj2LJlxPYD9c">Join Us</a>
43
- </p>
44
- <p align="center">
45
- πŸ‘‹ Contact us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
46
- </p>
 
10
  <img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
11
  </div>
12
 
13
+ <p align="center">
14
+ <a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
15
+ <a href="https://arxiv.org/abs/2506.07900" target="_blank">Technical Report</a> |
16
+ <a href="https://mp.weixin.qq.com/s/KIhH2nCURBXuFXAtYRpuXg?poc_token=HBIsUWijxino8oJ5s6HcjcfXFRi0Xj2LJlxPYD9c">Join Us</a>
17
+ </p>
18
+ <p align="center">
19
+ πŸ‘‹ Contact us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
20
+ </p>
21
+
22
+ ## What's New
23
+ - [2025.09.05] **MiniCPM4.1** series are released! This series is a hybrid reasoning model, which can be used in
24
+ both deep reasoning mode and non-reasoning mode. πŸ”₯πŸ”₯πŸ”₯
25
+ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).πŸ”₯πŸ”₯πŸ”₯
26
+
27
+ ## MiniCPM4 and MiniCPM4.1 Series
28
+ MiniCPM4 and MiniCPM4.1 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
29
+ - [MiniCPM4.1-8B](https://huggingface.co/openbmb/MiniCPM4.1-8B): The latest version of MiniCPM4, with 8B parameters, support fusion thinking. (**<-- you are here**)
30
+ - [MiniCPM4.1-8B-GPTQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-GPTQ): MiniCPM4.1-8B in GPTQ format.
31
+ - [MiniCPM4.1-8B-AutoAWQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-AutoAWQ): MiniCPM4.1-8B in AutoAWQ format.
32
+ - [MiniCPM-4.1-8B-Marlin](https://huggingface.co/openbmb/MiniCPM-4.1-8B-Marlin): MiniCPM4.1-8B in Marlin format.
33
+ - [MiniCPM4.1-8B-GGUF](https://huggingface.co/openbmb/MiniCPM4.1-8B-GGUF): MiniCPM4.1-8B in GGUF format.
34
+ - [MiniCPM4.1-8B-MLX](https://huggingface.co/openbmb/MiniCPM4.1-8B-MLX): MiniCPM4.1-8B in MLX format.
35
+ - [MiniCPM4.1-8B-Eagle3](https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3): Eagle3 model for MiniCPM4.1-8B.
36
+ - **MiniCPM4 Series**
37
+ <details>
38
+ <summary>Click to expand all MiniCPM4 series models</summary>
39
+
40
+ - [**MiniCPM4-8B**](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship model with 8B parameters, trained on 8T tokens
41
+ - [**MiniCPM4-0.5B**](https://huggingface.co/openbmb/MiniCPM4-0.5B): Lightweight version with 0.5B parameters, trained on 1T tokens
42
+ - [**MiniCPM4-8B-Eagle-FRSpec**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference
43
+ - [**MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head with QAT for FRSpec, integrating speculation and quantization for ultra acceleration
44
+ - [**MiniCPM4-8B-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format for speculative inference
45
+ - [**MiniCPM4-8B-marlin-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format
46
+ - [**BitCPM4-0.5B**](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization of MiniCPM4-0.5B, achieving 90% bit width reduction
47
+ - [**BitCPM4-1B**](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization of MiniCPM3-1B, achieving 90% bit width reduction
48
+ - [**MiniCPM4-Survey**](https://huggingface.co/openbmb/MiniCPM4-Survey): Generates trustworthy, long-form survey papers from user queries
49
+ - [**MiniCPM4-MCP**](https://huggingface.co/openbmb/MiniCPM4-MCP): Integrates MCP tools to autonomously satisfy user requirements
50
+ </details>
51
+
52
+ ## Introduction
53
+ MiniCPM4 and MiniCPM4.1 are extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
54
+
55
+ - πŸ—οΈ **Efficient Model Architecture:**
56
+ - InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
57
+
58
+ - 🧠 **Efficient Learning Algorithms:**
59
+ - Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
60
+ - BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
61
+ - Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
62
+
63
+ - πŸ“š **High-Quality Training Data:**
64
+ - UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
65
+ - UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
66
+
67
+ - ⚑ **Efficient Inference System:**
68
+ - CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
69
+ - ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
70
+
71
  ## Usage
72
  ### Prebuilt [mlx-lm](https://github.com/ml-explore/mlx-lm.git)
73
  ```bash
 
93
  )
94
  print(response)
95
  ```