Upload 12 files
Browse files- added_tokens.json +10 -0
- chat_template.jinja +7 -0
- config.json +185 -0
- configuration_minicpm.py +202 -0
- generation_config.json +13 -0
- model.safetensors +3 -0
- model.safetensors.index.json +751 -0
- modeling_minicpm.py +968 -0
- special_tokens_map.json +40 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +117 -0
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|execute_end|>": 73444,
|
3 |
+
"<|execute_start|>": 73443,
|
4 |
+
"<|fim_middle|>": 73446,
|
5 |
+
"<|fim_prefix|>": 73445,
|
6 |
+
"<|fim_suffix|>": 73447,
|
7 |
+
"<|im_end|>": 73440,
|
8 |
+
"<|im_start|>": 73441,
|
9 |
+
"<|tool_call|>": 73442
|
10 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% for message in messages %}{{'<|im_start|>' + message['role'] + '
|
2 |
+
' + message['content'] + '<|im_end|>' + '
|
3 |
+
'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
|
4 |
+
' }}{% if enable_thinking is defined and enable_thinking is false %}{{ '<think>
|
5 |
+
|
6 |
+
</think>
|
7 |
+
' }}{% endif %}{% endif %}
|
config.json
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MiniCPMForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
9 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
11 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
12 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
13 |
+
},
|
14 |
+
"bos_token_id": 1,
|
15 |
+
"dim_model_base": 256,
|
16 |
+
"eos_token_id": 73440,
|
17 |
+
"head_dim": 128,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 4096,
|
20 |
+
"initializer_range": 0.1,
|
21 |
+
"intermediate_size": 16384,
|
22 |
+
"max_position_embeddings": 65536,
|
23 |
+
"mlp_bias": false,
|
24 |
+
"model_type": "minicpm",
|
25 |
+
"num_attention_heads": 32,
|
26 |
+
"num_hidden_layers": 32,
|
27 |
+
"num_key_value_heads": 2,
|
28 |
+
"pad_token_id": 73440,
|
29 |
+
"pretraining_tp": 1,
|
30 |
+
"quantization": {
|
31 |
+
"group_size": 64,
|
32 |
+
"bits": 4
|
33 |
+
},
|
34 |
+
"quantization_config": {
|
35 |
+
"group_size": 64,
|
36 |
+
"bits": 4
|
37 |
+
},
|
38 |
+
"rms_norm_eps": 1e-06,
|
39 |
+
"rope_scaling": {
|
40 |
+
"factor": 1.0,
|
41 |
+
"long_factor": [
|
42 |
+
0.9982316082870437,
|
43 |
+
1.033048153422584,
|
44 |
+
1.0749920956484724,
|
45 |
+
1.1255096879436193,
|
46 |
+
1.1863348602111476,
|
47 |
+
1.259543828902579,
|
48 |
+
1.3476188888731149,
|
49 |
+
1.4535223827776373,
|
50 |
+
1.5807816745852985,
|
51 |
+
1.7335856049489526,
|
52 |
+
1.9168922912975785,
|
53 |
+
2.1365471404135326,
|
54 |
+
2.3994084200118646,
|
55 |
+
2.713475511863602,
|
56 |
+
3.0880118452194134,
|
57 |
+
3.533650295140154,
|
58 |
+
4.062463396503134,
|
59 |
+
4.687974098908333,
|
60 |
+
5.425075306704039,
|
61 |
+
6.289818967956352,
|
62 |
+
7.29902962722721,
|
63 |
+
8.469695779093664,
|
64 |
+
9.81809877306655,
|
65 |
+
11.358657902065282,
|
66 |
+
13.102505860712087,
|
67 |
+
15.055862949967128,
|
68 |
+
17.218348131364184,
|
69 |
+
19.581439255386453,
|
70 |
+
22.127353314656723,
|
71 |
+
24.828633849376587,
|
72 |
+
27.6486820771775,
|
73 |
+
30.54334096108829,
|
74 |
+
33.46345345363812,
|
75 |
+
36.358112337548896,
|
76 |
+
39.17816056534983,
|
77 |
+
41.879441100069684,
|
78 |
+
44.425355159339965,
|
79 |
+
46.78844628336223,
|
80 |
+
48.95093146475928,
|
81 |
+
50.90428855401433,
|
82 |
+
52.648136512661125,
|
83 |
+
54.18869564165987,
|
84 |
+
55.537098635632745,
|
85 |
+
56.7077647874992,
|
86 |
+
57.71697544677006,
|
87 |
+
58.58171910802236,
|
88 |
+
59.31882031581807,
|
89 |
+
59.94433101822328,
|
90 |
+
60.47314411958625,
|
91 |
+
60.918782569507,
|
92 |
+
61.29331890286281,
|
93 |
+
61.60738599471455,
|
94 |
+
61.87024727431288,
|
95 |
+
62.089902123428836,
|
96 |
+
62.27320880977746,
|
97 |
+
62.42601274014111,
|
98 |
+
62.55327203194878,
|
99 |
+
62.65917552585329,
|
100 |
+
62.74725058582382,
|
101 |
+
62.82045955451526,
|
102 |
+
62.88128472678279,
|
103 |
+
62.931802319077946,
|
104 |
+
62.97374626130382,
|
105 |
+
63.008562806439365
|
106 |
+
],
|
107 |
+
"original_max_position_embeddings": 65536,
|
108 |
+
"rope_type": "longrope",
|
109 |
+
"short_factor": [
|
110 |
+
0.9982316082870437,
|
111 |
+
1.033048153422584,
|
112 |
+
1.0749920956484724,
|
113 |
+
1.1255096879436193,
|
114 |
+
1.1863348602111476,
|
115 |
+
1.259543828902579,
|
116 |
+
1.3476188888731149,
|
117 |
+
1.4535223827776373,
|
118 |
+
1.5807816745852985,
|
119 |
+
1.7335856049489526,
|
120 |
+
1.9168922912975785,
|
121 |
+
2.1365471404135326,
|
122 |
+
2.3994084200118646,
|
123 |
+
2.713475511863602,
|
124 |
+
3.0880118452194134,
|
125 |
+
3.533650295140154,
|
126 |
+
4.062463396503134,
|
127 |
+
4.687974098908333,
|
128 |
+
5.425075306704039,
|
129 |
+
6.289818967956352,
|
130 |
+
7.29902962722721,
|
131 |
+
8.469695779093664,
|
132 |
+
9.81809877306655,
|
133 |
+
11.358657902065282,
|
134 |
+
13.102505860712087,
|
135 |
+
15.055862949967128,
|
136 |
+
17.218348131364184,
|
137 |
+
19.581439255386453,
|
138 |
+
22.127353314656723,
|
139 |
+
24.828633849376587,
|
140 |
+
27.6486820771775,
|
141 |
+
30.54334096108829,
|
142 |
+
33.46345345363812,
|
143 |
+
36.358112337548896,
|
144 |
+
39.17816056534983,
|
145 |
+
41.879441100069684,
|
146 |
+
44.425355159339965,
|
147 |
+
46.78844628336223,
|
148 |
+
48.95093146475928,
|
149 |
+
50.90428855401433,
|
150 |
+
52.648136512661125,
|
151 |
+
54.18869564165987,
|
152 |
+
55.537098635632745,
|
153 |
+
56.7077647874992,
|
154 |
+
57.71697544677006,
|
155 |
+
58.58171910802236,
|
156 |
+
59.31882031581807,
|
157 |
+
59.94433101822328,
|
158 |
+
60.47314411958625,
|
159 |
+
60.918782569507,
|
160 |
+
61.29331890286281,
|
161 |
+
61.60738599471455,
|
162 |
+
61.87024727431288,
|
163 |
+
62.089902123428836,
|
164 |
+
62.27320880977746,
|
165 |
+
62.42601274014111,
|
166 |
+
62.55327203194878,
|
167 |
+
62.65917552585329,
|
168 |
+
62.74725058582382,
|
169 |
+
62.82045955451526,
|
170 |
+
62.88128472678279,
|
171 |
+
62.931802319077946,
|
172 |
+
62.97374626130382,
|
173 |
+
63.008562806439365
|
174 |
+
],
|
175 |
+
"type": "longrope"
|
176 |
+
},
|
177 |
+
"rope_theta": 10000.0,
|
178 |
+
"scale_depth": 1.4,
|
179 |
+
"scale_emb": 12,
|
180 |
+
"tie_word_embeddings": false,
|
181 |
+
"torch_dtype": "bfloat16",
|
182 |
+
"transformers_version": "4.53.3",
|
183 |
+
"use_cache": true,
|
184 |
+
"vocab_size": 73448
|
185 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MiniCPM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class MiniCPMConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
64 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
65 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
81 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to tie weight embeddings
|
86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
87 |
+
The base period of the RoPE embeddings.
|
88 |
+
rope_scaling (`Dict`, *optional*):
|
89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
93 |
+
these scaling strategies behave:
|
94 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
95 |
+
experimental feature, subject to breaking API changes in future versions.
|
96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
98 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
99 |
+
The dropout ratio for the attention probabilities.
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
103 |
+
|
104 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
105 |
+
>>> configuration = MiniCPMConfig()
|
106 |
+
|
107 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
108 |
+
>>> model = MiniCPMModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "minicpm"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32000,
|
120 |
+
hidden_size=4096,
|
121 |
+
intermediate_size=11008,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
hidden_act="silu",
|
126 |
+
max_position_embeddings=2048,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-6,
|
129 |
+
use_cache=True,
|
130 |
+
pad_token_id=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=2,
|
133 |
+
pretraining_tp=1,
|
134 |
+
tie_word_embeddings=True,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
attention_bias=False,
|
138 |
+
attention_dropout=0.0,
|
139 |
+
scale_emb=1,
|
140 |
+
dim_model_base=1,
|
141 |
+
scale_depth=1,
|
142 |
+
**kwargs,
|
143 |
+
):
|
144 |
+
self.vocab_size = vocab_size
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
# for backward compatibility
|
152 |
+
if num_key_value_heads is None:
|
153 |
+
num_key_value_heads = num_attention_heads
|
154 |
+
|
155 |
+
self.num_key_value_heads = num_key_value_heads
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.pretraining_tp = pretraining_tp
|
160 |
+
self.use_cache = use_cache
|
161 |
+
self.rope_theta = rope_theta
|
162 |
+
self.rope_scaling = rope_scaling
|
163 |
+
# self._rope_scaling_validation()
|
164 |
+
self.attention_bias = attention_bias
|
165 |
+
self.attention_dropout = attention_dropout
|
166 |
+
self.scale_emb = scale_emb
|
167 |
+
self.dim_model_base = dim_model_base
|
168 |
+
self.scale_depth = scale_depth
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
tie_word_embeddings=tie_word_embeddings,
|
175 |
+
**kwargs,
|
176 |
+
)
|
177 |
+
try:
|
178 |
+
import flash_attn
|
179 |
+
self._attn_implementation = "flash_attention_2"
|
180 |
+
except:
|
181 |
+
pass
|
182 |
+
|
183 |
+
def _rope_scaling_validation(self):
|
184 |
+
"""
|
185 |
+
Validate the `rope_scaling` configuration.
|
186 |
+
"""
|
187 |
+
if self.rope_scaling is None:
|
188 |
+
return
|
189 |
+
|
190 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
191 |
+
raise ValueError(
|
192 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
193 |
+
f"got {self.rope_scaling}"
|
194 |
+
)
|
195 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
196 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
197 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
198 |
+
raise ValueError(
|
199 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
200 |
+
)
|
201 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
202 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
2,
|
6 |
+
73440
|
7 |
+
],
|
8 |
+
"pad_token_id": 2,
|
9 |
+
"temperature": 0.8,
|
10 |
+
"top_p": 0.8,
|
11 |
+
"transformers_version": "4.53.3",
|
12 |
+
"trust_remote_code": true
|
13 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d2bccd2c57891b82cf9fc1f833579e617655670a6f11c7d3d81d88c3b0222a2
|
3 |
+
size 4604672688
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 4604588032,
|
4 |
+
"total_parameters": 8185253888
|
5 |
+
},
|
6 |
+
"weight_map": {
|
7 |
+
"lm_head.biases": "model.safetensors",
|
8 |
+
"lm_head.scales": "model.safetensors",
|
9 |
+
"lm_head.weight": "model.safetensors",
|
10 |
+
"model.embed_tokens.biases": "model.safetensors",
|
11 |
+
"model.embed_tokens.scales": "model.safetensors",
|
12 |
+
"model.embed_tokens.weight": "model.safetensors",
|
13 |
+
"model.layers.0.input_layernorm.weight": "model.safetensors",
|
14 |
+
"model.layers.0.mlp.down_proj.biases": "model.safetensors",
|
15 |
+
"model.layers.0.mlp.down_proj.scales": "model.safetensors",
|
16 |
+
"model.layers.0.mlp.down_proj.weight": "model.safetensors",
|
17 |
+
"model.layers.0.mlp.gate_proj.biases": "model.safetensors",
|
18 |
+
"model.layers.0.mlp.gate_proj.scales": "model.safetensors",
|
19 |
+
"model.layers.0.mlp.gate_proj.weight": "model.safetensors",
|
20 |
+
"model.layers.0.mlp.up_proj.biases": "model.safetensors",
|
21 |
+
"model.layers.0.mlp.up_proj.scales": "model.safetensors",
|
22 |
+
"model.layers.0.mlp.up_proj.weight": "model.safetensors",
|
23 |
+
"model.layers.0.post_attention_layernorm.weight": "model.safetensors",
|
24 |
+
"model.layers.0.self_attn.k_proj.biases": "model.safetensors",
|
25 |
+
"model.layers.0.self_attn.k_proj.scales": "model.safetensors",
|
26 |
+
"model.layers.0.self_attn.k_proj.weight": "model.safetensors",
|
27 |
+
"model.layers.0.self_attn.o_proj.biases": "model.safetensors",
|
28 |
+
"model.layers.0.self_attn.o_proj.scales": "model.safetensors",
|
29 |
+
"model.layers.0.self_attn.o_proj.weight": "model.safetensors",
|
30 |
+
"model.layers.0.self_attn.q_proj.biases": "model.safetensors",
|
31 |
+
"model.layers.0.self_attn.q_proj.scales": "model.safetensors",
|
32 |
+
"model.layers.0.self_attn.q_proj.weight": "model.safetensors",
|
33 |
+
"model.layers.0.self_attn.v_proj.biases": "model.safetensors",
|
34 |
+
"model.layers.0.self_attn.v_proj.scales": "model.safetensors",
|
35 |
+
"model.layers.0.self_attn.v_proj.weight": "model.safetensors",
|
36 |
+
"model.layers.1.input_layernorm.weight": "model.safetensors",
|
37 |
+
"model.layers.1.mlp.down_proj.biases": "model.safetensors",
|
38 |
+
"model.layers.1.mlp.down_proj.scales": "model.safetensors",
|
39 |
+
"model.layers.1.mlp.down_proj.weight": "model.safetensors",
|
40 |
+
"model.layers.1.mlp.gate_proj.biases": "model.safetensors",
|
41 |
+
"model.layers.1.mlp.gate_proj.scales": "model.safetensors",
|
42 |
+
"model.layers.1.mlp.gate_proj.weight": "model.safetensors",
|
43 |
+
"model.layers.1.mlp.up_proj.biases": "model.safetensors",
|
44 |
+
"model.layers.1.mlp.up_proj.scales": "model.safetensors",
|
45 |
+
"model.layers.1.mlp.up_proj.weight": "model.safetensors",
|
46 |
+
"model.layers.1.post_attention_layernorm.weight": "model.safetensors",
|
47 |
+
"model.layers.1.self_attn.k_proj.biases": "model.safetensors",
|
48 |
+
"model.layers.1.self_attn.k_proj.scales": "model.safetensors",
|
49 |
+
"model.layers.1.self_attn.k_proj.weight": "model.safetensors",
|
50 |
+
"model.layers.1.self_attn.o_proj.biases": "model.safetensors",
|
51 |
+
"model.layers.1.self_attn.o_proj.scales": "model.safetensors",
|
52 |
+
"model.layers.1.self_attn.o_proj.weight": "model.safetensors",
|
53 |
+
"model.layers.1.self_attn.q_proj.biases": "model.safetensors",
|
54 |
+
"model.layers.1.self_attn.q_proj.scales": "model.safetensors",
|
55 |
+
"model.layers.1.self_attn.q_proj.weight": "model.safetensors",
|
56 |
+
"model.layers.1.self_attn.v_proj.biases": "model.safetensors",
|
57 |
+
"model.layers.1.self_attn.v_proj.scales": "model.safetensors",
|
58 |
+
"model.layers.1.self_attn.v_proj.weight": "model.safetensors",
|
59 |
+
"model.layers.10.input_layernorm.weight": "model.safetensors",
|
60 |
+
"model.layers.10.mlp.down_proj.biases": "model.safetensors",
|
61 |
+
"model.layers.10.mlp.down_proj.scales": "model.safetensors",
|
62 |
+
"model.layers.10.mlp.down_proj.weight": "model.safetensors",
|
63 |
+
"model.layers.10.mlp.gate_proj.biases": "model.safetensors",
|
64 |
+
"model.layers.10.mlp.gate_proj.scales": "model.safetensors",
|
65 |
+
"model.layers.10.mlp.gate_proj.weight": "model.safetensors",
|
66 |
+
"model.layers.10.mlp.up_proj.biases": "model.safetensors",
|
67 |
+
"model.layers.10.mlp.up_proj.scales": "model.safetensors",
|
68 |
+
"model.layers.10.mlp.up_proj.weight": "model.safetensors",
|
69 |
+
"model.layers.10.post_attention_layernorm.weight": "model.safetensors",
|
70 |
+
"model.layers.10.self_attn.k_proj.biases": "model.safetensors",
|
71 |
+
"model.layers.10.self_attn.k_proj.scales": "model.safetensors",
|
72 |
+
"model.layers.10.self_attn.k_proj.weight": "model.safetensors",
|
73 |
+
"model.layers.10.self_attn.o_proj.biases": "model.safetensors",
|
74 |
+
"model.layers.10.self_attn.o_proj.scales": "model.safetensors",
|
75 |
+
"model.layers.10.self_attn.o_proj.weight": "model.safetensors",
|
76 |
+
"model.layers.10.self_attn.q_proj.biases": "model.safetensors",
|
77 |
+
"model.layers.10.self_attn.q_proj.scales": "model.safetensors",
|
78 |
+
"model.layers.10.self_attn.q_proj.weight": "model.safetensors",
|
79 |
+
"model.layers.10.self_attn.v_proj.biases": "model.safetensors",
|
80 |
+
"model.layers.10.self_attn.v_proj.scales": "model.safetensors",
|
81 |
+
"model.layers.10.self_attn.v_proj.weight": "model.safetensors",
|
82 |
+
"model.layers.11.input_layernorm.weight": "model.safetensors",
|
83 |
+
"model.layers.11.mlp.down_proj.biases": "model.safetensors",
|
84 |
+
"model.layers.11.mlp.down_proj.scales": "model.safetensors",
|
85 |
+
"model.layers.11.mlp.down_proj.weight": "model.safetensors",
|
86 |
+
"model.layers.11.mlp.gate_proj.biases": "model.safetensors",
|
87 |
+
"model.layers.11.mlp.gate_proj.scales": "model.safetensors",
|
88 |
+
"model.layers.11.mlp.gate_proj.weight": "model.safetensors",
|
89 |
+
"model.layers.11.mlp.up_proj.biases": "model.safetensors",
|
90 |
+
"model.layers.11.mlp.up_proj.scales": "model.safetensors",
|
91 |
+
"model.layers.11.mlp.up_proj.weight": "model.safetensors",
|
92 |
+
"model.layers.11.post_attention_layernorm.weight": "model.safetensors",
|
93 |
+
"model.layers.11.self_attn.k_proj.biases": "model.safetensors",
|
94 |
+
"model.layers.11.self_attn.k_proj.scales": "model.safetensors",
|
95 |
+
"model.layers.11.self_attn.k_proj.weight": "model.safetensors",
|
96 |
+
"model.layers.11.self_attn.o_proj.biases": "model.safetensors",
|
97 |
+
"model.layers.11.self_attn.o_proj.scales": "model.safetensors",
|
98 |
+
"model.layers.11.self_attn.o_proj.weight": "model.safetensors",
|
99 |
+
"model.layers.11.self_attn.q_proj.biases": "model.safetensors",
|
100 |
+
"model.layers.11.self_attn.q_proj.scales": "model.safetensors",
|
101 |
+
"model.layers.11.self_attn.q_proj.weight": "model.safetensors",
|
102 |
+
"model.layers.11.self_attn.v_proj.biases": "model.safetensors",
|
103 |
+
"model.layers.11.self_attn.v_proj.scales": "model.safetensors",
|
104 |
+
"model.layers.11.self_attn.v_proj.weight": "model.safetensors",
|
105 |
+
"model.layers.12.input_layernorm.weight": "model.safetensors",
|
106 |
+
"model.layers.12.mlp.down_proj.biases": "model.safetensors",
|
107 |
+
"model.layers.12.mlp.down_proj.scales": "model.safetensors",
|
108 |
+
"model.layers.12.mlp.down_proj.weight": "model.safetensors",
|
109 |
+
"model.layers.12.mlp.gate_proj.biases": "model.safetensors",
|
110 |
+
"model.layers.12.mlp.gate_proj.scales": "model.safetensors",
|
111 |
+
"model.layers.12.mlp.gate_proj.weight": "model.safetensors",
|
112 |
+
"model.layers.12.mlp.up_proj.biases": "model.safetensors",
|
113 |
+
"model.layers.12.mlp.up_proj.scales": "model.safetensors",
|
114 |
+
"model.layers.12.mlp.up_proj.weight": "model.safetensors",
|
115 |
+
"model.layers.12.post_attention_layernorm.weight": "model.safetensors",
|
116 |
+
"model.layers.12.self_attn.k_proj.biases": "model.safetensors",
|
117 |
+
"model.layers.12.self_attn.k_proj.scales": "model.safetensors",
|
118 |
+
"model.layers.12.self_attn.k_proj.weight": "model.safetensors",
|
119 |
+
"model.layers.12.self_attn.o_proj.biases": "model.safetensors",
|
120 |
+
"model.layers.12.self_attn.o_proj.scales": "model.safetensors",
|
121 |
+
"model.layers.12.self_attn.o_proj.weight": "model.safetensors",
|
122 |
+
"model.layers.12.self_attn.q_proj.biases": "model.safetensors",
|
123 |
+
"model.layers.12.self_attn.q_proj.scales": "model.safetensors",
|
124 |
+
"model.layers.12.self_attn.q_proj.weight": "model.safetensors",
|
125 |
+
"model.layers.12.self_attn.v_proj.biases": "model.safetensors",
|
126 |
+
"model.layers.12.self_attn.v_proj.scales": "model.safetensors",
|
127 |
+
"model.layers.12.self_attn.v_proj.weight": "model.safetensors",
|
128 |
+
"model.layers.13.input_layernorm.weight": "model.safetensors",
|
129 |
+
"model.layers.13.mlp.down_proj.biases": "model.safetensors",
|
130 |
+
"model.layers.13.mlp.down_proj.scales": "model.safetensors",
|
131 |
+
"model.layers.13.mlp.down_proj.weight": "model.safetensors",
|
132 |
+
"model.layers.13.mlp.gate_proj.biases": "model.safetensors",
|
133 |
+
"model.layers.13.mlp.gate_proj.scales": "model.safetensors",
|
134 |
+
"model.layers.13.mlp.gate_proj.weight": "model.safetensors",
|
135 |
+
"model.layers.13.mlp.up_proj.biases": "model.safetensors",
|
136 |
+
"model.layers.13.mlp.up_proj.scales": "model.safetensors",
|
137 |
+
"model.layers.13.mlp.up_proj.weight": "model.safetensors",
|
138 |
+
"model.layers.13.post_attention_layernorm.weight": "model.safetensors",
|
139 |
+
"model.layers.13.self_attn.k_proj.biases": "model.safetensors",
|
140 |
+
"model.layers.13.self_attn.k_proj.scales": "model.safetensors",
|
141 |
+
"model.layers.13.self_attn.k_proj.weight": "model.safetensors",
|
142 |
+
"model.layers.13.self_attn.o_proj.biases": "model.safetensors",
|
143 |
+
"model.layers.13.self_attn.o_proj.scales": "model.safetensors",
|
144 |
+
"model.layers.13.self_attn.o_proj.weight": "model.safetensors",
|
145 |
+
"model.layers.13.self_attn.q_proj.biases": "model.safetensors",
|
146 |
+
"model.layers.13.self_attn.q_proj.scales": "model.safetensors",
|
147 |
+
"model.layers.13.self_attn.q_proj.weight": "model.safetensors",
|
148 |
+
"model.layers.13.self_attn.v_proj.biases": "model.safetensors",
|
149 |
+
"model.layers.13.self_attn.v_proj.scales": "model.safetensors",
|
150 |
+
"model.layers.13.self_attn.v_proj.weight": "model.safetensors",
|
151 |
+
"model.layers.14.input_layernorm.weight": "model.safetensors",
|
152 |
+
"model.layers.14.mlp.down_proj.biases": "model.safetensors",
|
153 |
+
"model.layers.14.mlp.down_proj.scales": "model.safetensors",
|
154 |
+
"model.layers.14.mlp.down_proj.weight": "model.safetensors",
|
155 |
+
"model.layers.14.mlp.gate_proj.biases": "model.safetensors",
|
156 |
+
"model.layers.14.mlp.gate_proj.scales": "model.safetensors",
|
157 |
+
"model.layers.14.mlp.gate_proj.weight": "model.safetensors",
|
158 |
+
"model.layers.14.mlp.up_proj.biases": "model.safetensors",
|
159 |
+
"model.layers.14.mlp.up_proj.scales": "model.safetensors",
|
160 |
+
"model.layers.14.mlp.up_proj.weight": "model.safetensors",
|
161 |
+
"model.layers.14.post_attention_layernorm.weight": "model.safetensors",
|
162 |
+
"model.layers.14.self_attn.k_proj.biases": "model.safetensors",
|
163 |
+
"model.layers.14.self_attn.k_proj.scales": "model.safetensors",
|
164 |
+
"model.layers.14.self_attn.k_proj.weight": "model.safetensors",
|
165 |
+
"model.layers.14.self_attn.o_proj.biases": "model.safetensors",
|
166 |
+
"model.layers.14.self_attn.o_proj.scales": "model.safetensors",
|
167 |
+
"model.layers.14.self_attn.o_proj.weight": "model.safetensors",
|
168 |
+
"model.layers.14.self_attn.q_proj.biases": "model.safetensors",
|
169 |
+
"model.layers.14.self_attn.q_proj.scales": "model.safetensors",
|
170 |
+
"model.layers.14.self_attn.q_proj.weight": "model.safetensors",
|
171 |
+
"model.layers.14.self_attn.v_proj.biases": "model.safetensors",
|
172 |
+
"model.layers.14.self_attn.v_proj.scales": "model.safetensors",
|
173 |
+
"model.layers.14.self_attn.v_proj.weight": "model.safetensors",
|
174 |
+
"model.layers.15.input_layernorm.weight": "model.safetensors",
|
175 |
+
"model.layers.15.mlp.down_proj.biases": "model.safetensors",
|
176 |
+
"model.layers.15.mlp.down_proj.scales": "model.safetensors",
|
177 |
+
"model.layers.15.mlp.down_proj.weight": "model.safetensors",
|
178 |
+
"model.layers.15.mlp.gate_proj.biases": "model.safetensors",
|
179 |
+
"model.layers.15.mlp.gate_proj.scales": "model.safetensors",
|
180 |
+
"model.layers.15.mlp.gate_proj.weight": "model.safetensors",
|
181 |
+
"model.layers.15.mlp.up_proj.biases": "model.safetensors",
|
182 |
+
"model.layers.15.mlp.up_proj.scales": "model.safetensors",
|
183 |
+
"model.layers.15.mlp.up_proj.weight": "model.safetensors",
|
184 |
+
"model.layers.15.post_attention_layernorm.weight": "model.safetensors",
|
185 |
+
"model.layers.15.self_attn.k_proj.biases": "model.safetensors",
|
186 |
+
"model.layers.15.self_attn.k_proj.scales": "model.safetensors",
|
187 |
+
"model.layers.15.self_attn.k_proj.weight": "model.safetensors",
|
188 |
+
"model.layers.15.self_attn.o_proj.biases": "model.safetensors",
|
189 |
+
"model.layers.15.self_attn.o_proj.scales": "model.safetensors",
|
190 |
+
"model.layers.15.self_attn.o_proj.weight": "model.safetensors",
|
191 |
+
"model.layers.15.self_attn.q_proj.biases": "model.safetensors",
|
192 |
+
"model.layers.15.self_attn.q_proj.scales": "model.safetensors",
|
193 |
+
"model.layers.15.self_attn.q_proj.weight": "model.safetensors",
|
194 |
+
"model.layers.15.self_attn.v_proj.biases": "model.safetensors",
|
195 |
+
"model.layers.15.self_attn.v_proj.scales": "model.safetensors",
|
196 |
+
"model.layers.15.self_attn.v_proj.weight": "model.safetensors",
|
197 |
+
"model.layers.16.input_layernorm.weight": "model.safetensors",
|
198 |
+
"model.layers.16.mlp.down_proj.biases": "model.safetensors",
|
199 |
+
"model.layers.16.mlp.down_proj.scales": "model.safetensors",
|
200 |
+
"model.layers.16.mlp.down_proj.weight": "model.safetensors",
|
201 |
+
"model.layers.16.mlp.gate_proj.biases": "model.safetensors",
|
202 |
+
"model.layers.16.mlp.gate_proj.scales": "model.safetensors",
|
203 |
+
"model.layers.16.mlp.gate_proj.weight": "model.safetensors",
|
204 |
+
"model.layers.16.mlp.up_proj.biases": "model.safetensors",
|
205 |
+
"model.layers.16.mlp.up_proj.scales": "model.safetensors",
|
206 |
+
"model.layers.16.mlp.up_proj.weight": "model.safetensors",
|
207 |
+
"model.layers.16.post_attention_layernorm.weight": "model.safetensors",
|
208 |
+
"model.layers.16.self_attn.k_proj.biases": "model.safetensors",
|
209 |
+
"model.layers.16.self_attn.k_proj.scales": "model.safetensors",
|
210 |
+
"model.layers.16.self_attn.k_proj.weight": "model.safetensors",
|
211 |
+
"model.layers.16.self_attn.o_proj.biases": "model.safetensors",
|
212 |
+
"model.layers.16.self_attn.o_proj.scales": "model.safetensors",
|
213 |
+
"model.layers.16.self_attn.o_proj.weight": "model.safetensors",
|
214 |
+
"model.layers.16.self_attn.q_proj.biases": "model.safetensors",
|
215 |
+
"model.layers.16.self_attn.q_proj.scales": "model.safetensors",
|
216 |
+
"model.layers.16.self_attn.q_proj.weight": "model.safetensors",
|
217 |
+
"model.layers.16.self_attn.v_proj.biases": "model.safetensors",
|
218 |
+
"model.layers.16.self_attn.v_proj.scales": "model.safetensors",
|
219 |
+
"model.layers.16.self_attn.v_proj.weight": "model.safetensors",
|
220 |
+
"model.layers.17.input_layernorm.weight": "model.safetensors",
|
221 |
+
"model.layers.17.mlp.down_proj.biases": "model.safetensors",
|
222 |
+
"model.layers.17.mlp.down_proj.scales": "model.safetensors",
|
223 |
+
"model.layers.17.mlp.down_proj.weight": "model.safetensors",
|
224 |
+
"model.layers.17.mlp.gate_proj.biases": "model.safetensors",
|
225 |
+
"model.layers.17.mlp.gate_proj.scales": "model.safetensors",
|
226 |
+
"model.layers.17.mlp.gate_proj.weight": "model.safetensors",
|
227 |
+
"model.layers.17.mlp.up_proj.biases": "model.safetensors",
|
228 |
+
"model.layers.17.mlp.up_proj.scales": "model.safetensors",
|
229 |
+
"model.layers.17.mlp.up_proj.weight": "model.safetensors",
|
230 |
+
"model.layers.17.post_attention_layernorm.weight": "model.safetensors",
|
231 |
+
"model.layers.17.self_attn.k_proj.biases": "model.safetensors",
|
232 |
+
"model.layers.17.self_attn.k_proj.scales": "model.safetensors",
|
233 |
+
"model.layers.17.self_attn.k_proj.weight": "model.safetensors",
|
234 |
+
"model.layers.17.self_attn.o_proj.biases": "model.safetensors",
|
235 |
+
"model.layers.17.self_attn.o_proj.scales": "model.safetensors",
|
236 |
+
"model.layers.17.self_attn.o_proj.weight": "model.safetensors",
|
237 |
+
"model.layers.17.self_attn.q_proj.biases": "model.safetensors",
|
238 |
+
"model.layers.17.self_attn.q_proj.scales": "model.safetensors",
|
239 |
+
"model.layers.17.self_attn.q_proj.weight": "model.safetensors",
|
240 |
+
"model.layers.17.self_attn.v_proj.biases": "model.safetensors",
|
241 |
+
"model.layers.17.self_attn.v_proj.scales": "model.safetensors",
|
242 |
+
"model.layers.17.self_attn.v_proj.weight": "model.safetensors",
|
243 |
+
"model.layers.18.input_layernorm.weight": "model.safetensors",
|
244 |
+
"model.layers.18.mlp.down_proj.biases": "model.safetensors",
|
245 |
+
"model.layers.18.mlp.down_proj.scales": "model.safetensors",
|
246 |
+
"model.layers.18.mlp.down_proj.weight": "model.safetensors",
|
247 |
+
"model.layers.18.mlp.gate_proj.biases": "model.safetensors",
|
248 |
+
"model.layers.18.mlp.gate_proj.scales": "model.safetensors",
|
249 |
+
"model.layers.18.mlp.gate_proj.weight": "model.safetensors",
|
250 |
+
"model.layers.18.mlp.up_proj.biases": "model.safetensors",
|
251 |
+
"model.layers.18.mlp.up_proj.scales": "model.safetensors",
|
252 |
+
"model.layers.18.mlp.up_proj.weight": "model.safetensors",
|
253 |
+
"model.layers.18.post_attention_layernorm.weight": "model.safetensors",
|
254 |
+
"model.layers.18.self_attn.k_proj.biases": "model.safetensors",
|
255 |
+
"model.layers.18.self_attn.k_proj.scales": "model.safetensors",
|
256 |
+
"model.layers.18.self_attn.k_proj.weight": "model.safetensors",
|
257 |
+
"model.layers.18.self_attn.o_proj.biases": "model.safetensors",
|
258 |
+
"model.layers.18.self_attn.o_proj.scales": "model.safetensors",
|
259 |
+
"model.layers.18.self_attn.o_proj.weight": "model.safetensors",
|
260 |
+
"model.layers.18.self_attn.q_proj.biases": "model.safetensors",
|
261 |
+
"model.layers.18.self_attn.q_proj.scales": "model.safetensors",
|
262 |
+
"model.layers.18.self_attn.q_proj.weight": "model.safetensors",
|
263 |
+
"model.layers.18.self_attn.v_proj.biases": "model.safetensors",
|
264 |
+
"model.layers.18.self_attn.v_proj.scales": "model.safetensors",
|
265 |
+
"model.layers.18.self_attn.v_proj.weight": "model.safetensors",
|
266 |
+
"model.layers.19.input_layernorm.weight": "model.safetensors",
|
267 |
+
"model.layers.19.mlp.down_proj.biases": "model.safetensors",
|
268 |
+
"model.layers.19.mlp.down_proj.scales": "model.safetensors",
|
269 |
+
"model.layers.19.mlp.down_proj.weight": "model.safetensors",
|
270 |
+
"model.layers.19.mlp.gate_proj.biases": "model.safetensors",
|
271 |
+
"model.layers.19.mlp.gate_proj.scales": "model.safetensors",
|
272 |
+
"model.layers.19.mlp.gate_proj.weight": "model.safetensors",
|
273 |
+
"model.layers.19.mlp.up_proj.biases": "model.safetensors",
|
274 |
+
"model.layers.19.mlp.up_proj.scales": "model.safetensors",
|
275 |
+
"model.layers.19.mlp.up_proj.weight": "model.safetensors",
|
276 |
+
"model.layers.19.post_attention_layernorm.weight": "model.safetensors",
|
277 |
+
"model.layers.19.self_attn.k_proj.biases": "model.safetensors",
|
278 |
+
"model.layers.19.self_attn.k_proj.scales": "model.safetensors",
|
279 |
+
"model.layers.19.self_attn.k_proj.weight": "model.safetensors",
|
280 |
+
"model.layers.19.self_attn.o_proj.biases": "model.safetensors",
|
281 |
+
"model.layers.19.self_attn.o_proj.scales": "model.safetensors",
|
282 |
+
"model.layers.19.self_attn.o_proj.weight": "model.safetensors",
|
283 |
+
"model.layers.19.self_attn.q_proj.biases": "model.safetensors",
|
284 |
+
"model.layers.19.self_attn.q_proj.scales": "model.safetensors",
|
285 |
+
"model.layers.19.self_attn.q_proj.weight": "model.safetensors",
|
286 |
+
"model.layers.19.self_attn.v_proj.biases": "model.safetensors",
|
287 |
+
"model.layers.19.self_attn.v_proj.scales": "model.safetensors",
|
288 |
+
"model.layers.19.self_attn.v_proj.weight": "model.safetensors",
|
289 |
+
"model.layers.2.input_layernorm.weight": "model.safetensors",
|
290 |
+
"model.layers.2.mlp.down_proj.biases": "model.safetensors",
|
291 |
+
"model.layers.2.mlp.down_proj.scales": "model.safetensors",
|
292 |
+
"model.layers.2.mlp.down_proj.weight": "model.safetensors",
|
293 |
+
"model.layers.2.mlp.gate_proj.biases": "model.safetensors",
|
294 |
+
"model.layers.2.mlp.gate_proj.scales": "model.safetensors",
|
295 |
+
"model.layers.2.mlp.gate_proj.weight": "model.safetensors",
|
296 |
+
"model.layers.2.mlp.up_proj.biases": "model.safetensors",
|
297 |
+
"model.layers.2.mlp.up_proj.scales": "model.safetensors",
|
298 |
+
"model.layers.2.mlp.up_proj.weight": "model.safetensors",
|
299 |
+
"model.layers.2.post_attention_layernorm.weight": "model.safetensors",
|
300 |
+
"model.layers.2.self_attn.k_proj.biases": "model.safetensors",
|
301 |
+
"model.layers.2.self_attn.k_proj.scales": "model.safetensors",
|
302 |
+
"model.layers.2.self_attn.k_proj.weight": "model.safetensors",
|
303 |
+
"model.layers.2.self_attn.o_proj.biases": "model.safetensors",
|
304 |
+
"model.layers.2.self_attn.o_proj.scales": "model.safetensors",
|
305 |
+
"model.layers.2.self_attn.o_proj.weight": "model.safetensors",
|
306 |
+
"model.layers.2.self_attn.q_proj.biases": "model.safetensors",
|
307 |
+
"model.layers.2.self_attn.q_proj.scales": "model.safetensors",
|
308 |
+
"model.layers.2.self_attn.q_proj.weight": "model.safetensors",
|
309 |
+
"model.layers.2.self_attn.v_proj.biases": "model.safetensors",
|
310 |
+
"model.layers.2.self_attn.v_proj.scales": "model.safetensors",
|
311 |
+
"model.layers.2.self_attn.v_proj.weight": "model.safetensors",
|
312 |
+
"model.layers.20.input_layernorm.weight": "model.safetensors",
|
313 |
+
"model.layers.20.mlp.down_proj.biases": "model.safetensors",
|
314 |
+
"model.layers.20.mlp.down_proj.scales": "model.safetensors",
|
315 |
+
"model.layers.20.mlp.down_proj.weight": "model.safetensors",
|
316 |
+
"model.layers.20.mlp.gate_proj.biases": "model.safetensors",
|
317 |
+
"model.layers.20.mlp.gate_proj.scales": "model.safetensors",
|
318 |
+
"model.layers.20.mlp.gate_proj.weight": "model.safetensors",
|
319 |
+
"model.layers.20.mlp.up_proj.biases": "model.safetensors",
|
320 |
+
"model.layers.20.mlp.up_proj.scales": "model.safetensors",
|
321 |
+
"model.layers.20.mlp.up_proj.weight": "model.safetensors",
|
322 |
+
"model.layers.20.post_attention_layernorm.weight": "model.safetensors",
|
323 |
+
"model.layers.20.self_attn.k_proj.biases": "model.safetensors",
|
324 |
+
"model.layers.20.self_attn.k_proj.scales": "model.safetensors",
|
325 |
+
"model.layers.20.self_attn.k_proj.weight": "model.safetensors",
|
326 |
+
"model.layers.20.self_attn.o_proj.biases": "model.safetensors",
|
327 |
+
"model.layers.20.self_attn.o_proj.scales": "model.safetensors",
|
328 |
+
"model.layers.20.self_attn.o_proj.weight": "model.safetensors",
|
329 |
+
"model.layers.20.self_attn.q_proj.biases": "model.safetensors",
|
330 |
+
"model.layers.20.self_attn.q_proj.scales": "model.safetensors",
|
331 |
+
"model.layers.20.self_attn.q_proj.weight": "model.safetensors",
|
332 |
+
"model.layers.20.self_attn.v_proj.biases": "model.safetensors",
|
333 |
+
"model.layers.20.self_attn.v_proj.scales": "model.safetensors",
|
334 |
+
"model.layers.20.self_attn.v_proj.weight": "model.safetensors",
|
335 |
+
"model.layers.21.input_layernorm.weight": "model.safetensors",
|
336 |
+
"model.layers.21.mlp.down_proj.biases": "model.safetensors",
|
337 |
+
"model.layers.21.mlp.down_proj.scales": "model.safetensors",
|
338 |
+
"model.layers.21.mlp.down_proj.weight": "model.safetensors",
|
339 |
+
"model.layers.21.mlp.gate_proj.biases": "model.safetensors",
|
340 |
+
"model.layers.21.mlp.gate_proj.scales": "model.safetensors",
|
341 |
+
"model.layers.21.mlp.gate_proj.weight": "model.safetensors",
|
342 |
+
"model.layers.21.mlp.up_proj.biases": "model.safetensors",
|
343 |
+
"model.layers.21.mlp.up_proj.scales": "model.safetensors",
|
344 |
+
"model.layers.21.mlp.up_proj.weight": "model.safetensors",
|
345 |
+
"model.layers.21.post_attention_layernorm.weight": "model.safetensors",
|
346 |
+
"model.layers.21.self_attn.k_proj.biases": "model.safetensors",
|
347 |
+
"model.layers.21.self_attn.k_proj.scales": "model.safetensors",
|
348 |
+
"model.layers.21.self_attn.k_proj.weight": "model.safetensors",
|
349 |
+
"model.layers.21.self_attn.o_proj.biases": "model.safetensors",
|
350 |
+
"model.layers.21.self_attn.o_proj.scales": "model.safetensors",
|
351 |
+
"model.layers.21.self_attn.o_proj.weight": "model.safetensors",
|
352 |
+
"model.layers.21.self_attn.q_proj.biases": "model.safetensors",
|
353 |
+
"model.layers.21.self_attn.q_proj.scales": "model.safetensors",
|
354 |
+
"model.layers.21.self_attn.q_proj.weight": "model.safetensors",
|
355 |
+
"model.layers.21.self_attn.v_proj.biases": "model.safetensors",
|
356 |
+
"model.layers.21.self_attn.v_proj.scales": "model.safetensors",
|
357 |
+
"model.layers.21.self_attn.v_proj.weight": "model.safetensors",
|
358 |
+
"model.layers.22.input_layernorm.weight": "model.safetensors",
|
359 |
+
"model.layers.22.mlp.down_proj.biases": "model.safetensors",
|
360 |
+
"model.layers.22.mlp.down_proj.scales": "model.safetensors",
|
361 |
+
"model.layers.22.mlp.down_proj.weight": "model.safetensors",
|
362 |
+
"model.layers.22.mlp.gate_proj.biases": "model.safetensors",
|
363 |
+
"model.layers.22.mlp.gate_proj.scales": "model.safetensors",
|
364 |
+
"model.layers.22.mlp.gate_proj.weight": "model.safetensors",
|
365 |
+
"model.layers.22.mlp.up_proj.biases": "model.safetensors",
|
366 |
+
"model.layers.22.mlp.up_proj.scales": "model.safetensors",
|
367 |
+
"model.layers.22.mlp.up_proj.weight": "model.safetensors",
|
368 |
+
"model.layers.22.post_attention_layernorm.weight": "model.safetensors",
|
369 |
+
"model.layers.22.self_attn.k_proj.biases": "model.safetensors",
|
370 |
+
"model.layers.22.self_attn.k_proj.scales": "model.safetensors",
|
371 |
+
"model.layers.22.self_attn.k_proj.weight": "model.safetensors",
|
372 |
+
"model.layers.22.self_attn.o_proj.biases": "model.safetensors",
|
373 |
+
"model.layers.22.self_attn.o_proj.scales": "model.safetensors",
|
374 |
+
"model.layers.22.self_attn.o_proj.weight": "model.safetensors",
|
375 |
+
"model.layers.22.self_attn.q_proj.biases": "model.safetensors",
|
376 |
+
"model.layers.22.self_attn.q_proj.scales": "model.safetensors",
|
377 |
+
"model.layers.22.self_attn.q_proj.weight": "model.safetensors",
|
378 |
+
"model.layers.22.self_attn.v_proj.biases": "model.safetensors",
|
379 |
+
"model.layers.22.self_attn.v_proj.scales": "model.safetensors",
|
380 |
+
"model.layers.22.self_attn.v_proj.weight": "model.safetensors",
|
381 |
+
"model.layers.23.input_layernorm.weight": "model.safetensors",
|
382 |
+
"model.layers.23.mlp.down_proj.biases": "model.safetensors",
|
383 |
+
"model.layers.23.mlp.down_proj.scales": "model.safetensors",
|
384 |
+
"model.layers.23.mlp.down_proj.weight": "model.safetensors",
|
385 |
+
"model.layers.23.mlp.gate_proj.biases": "model.safetensors",
|
386 |
+
"model.layers.23.mlp.gate_proj.scales": "model.safetensors",
|
387 |
+
"model.layers.23.mlp.gate_proj.weight": "model.safetensors",
|
388 |
+
"model.layers.23.mlp.up_proj.biases": "model.safetensors",
|
389 |
+
"model.layers.23.mlp.up_proj.scales": "model.safetensors",
|
390 |
+
"model.layers.23.mlp.up_proj.weight": "model.safetensors",
|
391 |
+
"model.layers.23.post_attention_layernorm.weight": "model.safetensors",
|
392 |
+
"model.layers.23.self_attn.k_proj.biases": "model.safetensors",
|
393 |
+
"model.layers.23.self_attn.k_proj.scales": "model.safetensors",
|
394 |
+
"model.layers.23.self_attn.k_proj.weight": "model.safetensors",
|
395 |
+
"model.layers.23.self_attn.o_proj.biases": "model.safetensors",
|
396 |
+
"model.layers.23.self_attn.o_proj.scales": "model.safetensors",
|
397 |
+
"model.layers.23.self_attn.o_proj.weight": "model.safetensors",
|
398 |
+
"model.layers.23.self_attn.q_proj.biases": "model.safetensors",
|
399 |
+
"model.layers.23.self_attn.q_proj.scales": "model.safetensors",
|
400 |
+
"model.layers.23.self_attn.q_proj.weight": "model.safetensors",
|
401 |
+
"model.layers.23.self_attn.v_proj.biases": "model.safetensors",
|
402 |
+
"model.layers.23.self_attn.v_proj.scales": "model.safetensors",
|
403 |
+
"model.layers.23.self_attn.v_proj.weight": "model.safetensors",
|
404 |
+
"model.layers.24.input_layernorm.weight": "model.safetensors",
|
405 |
+
"model.layers.24.mlp.down_proj.biases": "model.safetensors",
|
406 |
+
"model.layers.24.mlp.down_proj.scales": "model.safetensors",
|
407 |
+
"model.layers.24.mlp.down_proj.weight": "model.safetensors",
|
408 |
+
"model.layers.24.mlp.gate_proj.biases": "model.safetensors",
|
409 |
+
"model.layers.24.mlp.gate_proj.scales": "model.safetensors",
|
410 |
+
"model.layers.24.mlp.gate_proj.weight": "model.safetensors",
|
411 |
+
"model.layers.24.mlp.up_proj.biases": "model.safetensors",
|
412 |
+
"model.layers.24.mlp.up_proj.scales": "model.safetensors",
|
413 |
+
"model.layers.24.mlp.up_proj.weight": "model.safetensors",
|
414 |
+
"model.layers.24.post_attention_layernorm.weight": "model.safetensors",
|
415 |
+
"model.layers.24.self_attn.k_proj.biases": "model.safetensors",
|
416 |
+
"model.layers.24.self_attn.k_proj.scales": "model.safetensors",
|
417 |
+
"model.layers.24.self_attn.k_proj.weight": "model.safetensors",
|
418 |
+
"model.layers.24.self_attn.o_proj.biases": "model.safetensors",
|
419 |
+
"model.layers.24.self_attn.o_proj.scales": "model.safetensors",
|
420 |
+
"model.layers.24.self_attn.o_proj.weight": "model.safetensors",
|
421 |
+
"model.layers.24.self_attn.q_proj.biases": "model.safetensors",
|
422 |
+
"model.layers.24.self_attn.q_proj.scales": "model.safetensors",
|
423 |
+
"model.layers.24.self_attn.q_proj.weight": "model.safetensors",
|
424 |
+
"model.layers.24.self_attn.v_proj.biases": "model.safetensors",
|
425 |
+
"model.layers.24.self_attn.v_proj.scales": "model.safetensors",
|
426 |
+
"model.layers.24.self_attn.v_proj.weight": "model.safetensors",
|
427 |
+
"model.layers.25.input_layernorm.weight": "model.safetensors",
|
428 |
+
"model.layers.25.mlp.down_proj.biases": "model.safetensors",
|
429 |
+
"model.layers.25.mlp.down_proj.scales": "model.safetensors",
|
430 |
+
"model.layers.25.mlp.down_proj.weight": "model.safetensors",
|
431 |
+
"model.layers.25.mlp.gate_proj.biases": "model.safetensors",
|
432 |
+
"model.layers.25.mlp.gate_proj.scales": "model.safetensors",
|
433 |
+
"model.layers.25.mlp.gate_proj.weight": "model.safetensors",
|
434 |
+
"model.layers.25.mlp.up_proj.biases": "model.safetensors",
|
435 |
+
"model.layers.25.mlp.up_proj.scales": "model.safetensors",
|
436 |
+
"model.layers.25.mlp.up_proj.weight": "model.safetensors",
|
437 |
+
"model.layers.25.post_attention_layernorm.weight": "model.safetensors",
|
438 |
+
"model.layers.25.self_attn.k_proj.biases": "model.safetensors",
|
439 |
+
"model.layers.25.self_attn.k_proj.scales": "model.safetensors",
|
440 |
+
"model.layers.25.self_attn.k_proj.weight": "model.safetensors",
|
441 |
+
"model.layers.25.self_attn.o_proj.biases": "model.safetensors",
|
442 |
+
"model.layers.25.self_attn.o_proj.scales": "model.safetensors",
|
443 |
+
"model.layers.25.self_attn.o_proj.weight": "model.safetensors",
|
444 |
+
"model.layers.25.self_attn.q_proj.biases": "model.safetensors",
|
445 |
+
"model.layers.25.self_attn.q_proj.scales": "model.safetensors",
|
446 |
+
"model.layers.25.self_attn.q_proj.weight": "model.safetensors",
|
447 |
+
"model.layers.25.self_attn.v_proj.biases": "model.safetensors",
|
448 |
+
"model.layers.25.self_attn.v_proj.scales": "model.safetensors",
|
449 |
+
"model.layers.25.self_attn.v_proj.weight": "model.safetensors",
|
450 |
+
"model.layers.26.input_layernorm.weight": "model.safetensors",
|
451 |
+
"model.layers.26.mlp.down_proj.biases": "model.safetensors",
|
452 |
+
"model.layers.26.mlp.down_proj.scales": "model.safetensors",
|
453 |
+
"model.layers.26.mlp.down_proj.weight": "model.safetensors",
|
454 |
+
"model.layers.26.mlp.gate_proj.biases": "model.safetensors",
|
455 |
+
"model.layers.26.mlp.gate_proj.scales": "model.safetensors",
|
456 |
+
"model.layers.26.mlp.gate_proj.weight": "model.safetensors",
|
457 |
+
"model.layers.26.mlp.up_proj.biases": "model.safetensors",
|
458 |
+
"model.layers.26.mlp.up_proj.scales": "model.safetensors",
|
459 |
+
"model.layers.26.mlp.up_proj.weight": "model.safetensors",
|
460 |
+
"model.layers.26.post_attention_layernorm.weight": "model.safetensors",
|
461 |
+
"model.layers.26.self_attn.k_proj.biases": "model.safetensors",
|
462 |
+
"model.layers.26.self_attn.k_proj.scales": "model.safetensors",
|
463 |
+
"model.layers.26.self_attn.k_proj.weight": "model.safetensors",
|
464 |
+
"model.layers.26.self_attn.o_proj.biases": "model.safetensors",
|
465 |
+
"model.layers.26.self_attn.o_proj.scales": "model.safetensors",
|
466 |
+
"model.layers.26.self_attn.o_proj.weight": "model.safetensors",
|
467 |
+
"model.layers.26.self_attn.q_proj.biases": "model.safetensors",
|
468 |
+
"model.layers.26.self_attn.q_proj.scales": "model.safetensors",
|
469 |
+
"model.layers.26.self_attn.q_proj.weight": "model.safetensors",
|
470 |
+
"model.layers.26.self_attn.v_proj.biases": "model.safetensors",
|
471 |
+
"model.layers.26.self_attn.v_proj.scales": "model.safetensors",
|
472 |
+
"model.layers.26.self_attn.v_proj.weight": "model.safetensors",
|
473 |
+
"model.layers.27.input_layernorm.weight": "model.safetensors",
|
474 |
+
"model.layers.27.mlp.down_proj.biases": "model.safetensors",
|
475 |
+
"model.layers.27.mlp.down_proj.scales": "model.safetensors",
|
476 |
+
"model.layers.27.mlp.down_proj.weight": "model.safetensors",
|
477 |
+
"model.layers.27.mlp.gate_proj.biases": "model.safetensors",
|
478 |
+
"model.layers.27.mlp.gate_proj.scales": "model.safetensors",
|
479 |
+
"model.layers.27.mlp.gate_proj.weight": "model.safetensors",
|
480 |
+
"model.layers.27.mlp.up_proj.biases": "model.safetensors",
|
481 |
+
"model.layers.27.mlp.up_proj.scales": "model.safetensors",
|
482 |
+
"model.layers.27.mlp.up_proj.weight": "model.safetensors",
|
483 |
+
"model.layers.27.post_attention_layernorm.weight": "model.safetensors",
|
484 |
+
"model.layers.27.self_attn.k_proj.biases": "model.safetensors",
|
485 |
+
"model.layers.27.self_attn.k_proj.scales": "model.safetensors",
|
486 |
+
"model.layers.27.self_attn.k_proj.weight": "model.safetensors",
|
487 |
+
"model.layers.27.self_attn.o_proj.biases": "model.safetensors",
|
488 |
+
"model.layers.27.self_attn.o_proj.scales": "model.safetensors",
|
489 |
+
"model.layers.27.self_attn.o_proj.weight": "model.safetensors",
|
490 |
+
"model.layers.27.self_attn.q_proj.biases": "model.safetensors",
|
491 |
+
"model.layers.27.self_attn.q_proj.scales": "model.safetensors",
|
492 |
+
"model.layers.27.self_attn.q_proj.weight": "model.safetensors",
|
493 |
+
"model.layers.27.self_attn.v_proj.biases": "model.safetensors",
|
494 |
+
"model.layers.27.self_attn.v_proj.scales": "model.safetensors",
|
495 |
+
"model.layers.27.self_attn.v_proj.weight": "model.safetensors",
|
496 |
+
"model.layers.28.input_layernorm.weight": "model.safetensors",
|
497 |
+
"model.layers.28.mlp.down_proj.biases": "model.safetensors",
|
498 |
+
"model.layers.28.mlp.down_proj.scales": "model.safetensors",
|
499 |
+
"model.layers.28.mlp.down_proj.weight": "model.safetensors",
|
500 |
+
"model.layers.28.mlp.gate_proj.biases": "model.safetensors",
|
501 |
+
"model.layers.28.mlp.gate_proj.scales": "model.safetensors",
|
502 |
+
"model.layers.28.mlp.gate_proj.weight": "model.safetensors",
|
503 |
+
"model.layers.28.mlp.up_proj.biases": "model.safetensors",
|
504 |
+
"model.layers.28.mlp.up_proj.scales": "model.safetensors",
|
505 |
+
"model.layers.28.mlp.up_proj.weight": "model.safetensors",
|
506 |
+
"model.layers.28.post_attention_layernorm.weight": "model.safetensors",
|
507 |
+
"model.layers.28.self_attn.k_proj.biases": "model.safetensors",
|
508 |
+
"model.layers.28.self_attn.k_proj.scales": "model.safetensors",
|
509 |
+
"model.layers.28.self_attn.k_proj.weight": "model.safetensors",
|
510 |
+
"model.layers.28.self_attn.o_proj.biases": "model.safetensors",
|
511 |
+
"model.layers.28.self_attn.o_proj.scales": "model.safetensors",
|
512 |
+
"model.layers.28.self_attn.o_proj.weight": "model.safetensors",
|
513 |
+
"model.layers.28.self_attn.q_proj.biases": "model.safetensors",
|
514 |
+
"model.layers.28.self_attn.q_proj.scales": "model.safetensors",
|
515 |
+
"model.layers.28.self_attn.q_proj.weight": "model.safetensors",
|
516 |
+
"model.layers.28.self_attn.v_proj.biases": "model.safetensors",
|
517 |
+
"model.layers.28.self_attn.v_proj.scales": "model.safetensors",
|
518 |
+
"model.layers.28.self_attn.v_proj.weight": "model.safetensors",
|
519 |
+
"model.layers.29.input_layernorm.weight": "model.safetensors",
|
520 |
+
"model.layers.29.mlp.down_proj.biases": "model.safetensors",
|
521 |
+
"model.layers.29.mlp.down_proj.scales": "model.safetensors",
|
522 |
+
"model.layers.29.mlp.down_proj.weight": "model.safetensors",
|
523 |
+
"model.layers.29.mlp.gate_proj.biases": "model.safetensors",
|
524 |
+
"model.layers.29.mlp.gate_proj.scales": "model.safetensors",
|
525 |
+
"model.layers.29.mlp.gate_proj.weight": "model.safetensors",
|
526 |
+
"model.layers.29.mlp.up_proj.biases": "model.safetensors",
|
527 |
+
"model.layers.29.mlp.up_proj.scales": "model.safetensors",
|
528 |
+
"model.layers.29.mlp.up_proj.weight": "model.safetensors",
|
529 |
+
"model.layers.29.post_attention_layernorm.weight": "model.safetensors",
|
530 |
+
"model.layers.29.self_attn.k_proj.biases": "model.safetensors",
|
531 |
+
"model.layers.29.self_attn.k_proj.scales": "model.safetensors",
|
532 |
+
"model.layers.29.self_attn.k_proj.weight": "model.safetensors",
|
533 |
+
"model.layers.29.self_attn.o_proj.biases": "model.safetensors",
|
534 |
+
"model.layers.29.self_attn.o_proj.scales": "model.safetensors",
|
535 |
+
"model.layers.29.self_attn.o_proj.weight": "model.safetensors",
|
536 |
+
"model.layers.29.self_attn.q_proj.biases": "model.safetensors",
|
537 |
+
"model.layers.29.self_attn.q_proj.scales": "model.safetensors",
|
538 |
+
"model.layers.29.self_attn.q_proj.weight": "model.safetensors",
|
539 |
+
"model.layers.29.self_attn.v_proj.biases": "model.safetensors",
|
540 |
+
"model.layers.29.self_attn.v_proj.scales": "model.safetensors",
|
541 |
+
"model.layers.29.self_attn.v_proj.weight": "model.safetensors",
|
542 |
+
"model.layers.3.input_layernorm.weight": "model.safetensors",
|
543 |
+
"model.layers.3.mlp.down_proj.biases": "model.safetensors",
|
544 |
+
"model.layers.3.mlp.down_proj.scales": "model.safetensors",
|
545 |
+
"model.layers.3.mlp.down_proj.weight": "model.safetensors",
|
546 |
+
"model.layers.3.mlp.gate_proj.biases": "model.safetensors",
|
547 |
+
"model.layers.3.mlp.gate_proj.scales": "model.safetensors",
|
548 |
+
"model.layers.3.mlp.gate_proj.weight": "model.safetensors",
|
549 |
+
"model.layers.3.mlp.up_proj.biases": "model.safetensors",
|
550 |
+
"model.layers.3.mlp.up_proj.scales": "model.safetensors",
|
551 |
+
"model.layers.3.mlp.up_proj.weight": "model.safetensors",
|
552 |
+
"model.layers.3.post_attention_layernorm.weight": "model.safetensors",
|
553 |
+
"model.layers.3.self_attn.k_proj.biases": "model.safetensors",
|
554 |
+
"model.layers.3.self_attn.k_proj.scales": "model.safetensors",
|
555 |
+
"model.layers.3.self_attn.k_proj.weight": "model.safetensors",
|
556 |
+
"model.layers.3.self_attn.o_proj.biases": "model.safetensors",
|
557 |
+
"model.layers.3.self_attn.o_proj.scales": "model.safetensors",
|
558 |
+
"model.layers.3.self_attn.o_proj.weight": "model.safetensors",
|
559 |
+
"model.layers.3.self_attn.q_proj.biases": "model.safetensors",
|
560 |
+
"model.layers.3.self_attn.q_proj.scales": "model.safetensors",
|
561 |
+
"model.layers.3.self_attn.q_proj.weight": "model.safetensors",
|
562 |
+
"model.layers.3.self_attn.v_proj.biases": "model.safetensors",
|
563 |
+
"model.layers.3.self_attn.v_proj.scales": "model.safetensors",
|
564 |
+
"model.layers.3.self_attn.v_proj.weight": "model.safetensors",
|
565 |
+
"model.layers.30.input_layernorm.weight": "model.safetensors",
|
566 |
+
"model.layers.30.mlp.down_proj.biases": "model.safetensors",
|
567 |
+
"model.layers.30.mlp.down_proj.scales": "model.safetensors",
|
568 |
+
"model.layers.30.mlp.down_proj.weight": "model.safetensors",
|
569 |
+
"model.layers.30.mlp.gate_proj.biases": "model.safetensors",
|
570 |
+
"model.layers.30.mlp.gate_proj.scales": "model.safetensors",
|
571 |
+
"model.layers.30.mlp.gate_proj.weight": "model.safetensors",
|
572 |
+
"model.layers.30.mlp.up_proj.biases": "model.safetensors",
|
573 |
+
"model.layers.30.mlp.up_proj.scales": "model.safetensors",
|
574 |
+
"model.layers.30.mlp.up_proj.weight": "model.safetensors",
|
575 |
+
"model.layers.30.post_attention_layernorm.weight": "model.safetensors",
|
576 |
+
"model.layers.30.self_attn.k_proj.biases": "model.safetensors",
|
577 |
+
"model.layers.30.self_attn.k_proj.scales": "model.safetensors",
|
578 |
+
"model.layers.30.self_attn.k_proj.weight": "model.safetensors",
|
579 |
+
"model.layers.30.self_attn.o_proj.biases": "model.safetensors",
|
580 |
+
"model.layers.30.self_attn.o_proj.scales": "model.safetensors",
|
581 |
+
"model.layers.30.self_attn.o_proj.weight": "model.safetensors",
|
582 |
+
"model.layers.30.self_attn.q_proj.biases": "model.safetensors",
|
583 |
+
"model.layers.30.self_attn.q_proj.scales": "model.safetensors",
|
584 |
+
"model.layers.30.self_attn.q_proj.weight": "model.safetensors",
|
585 |
+
"model.layers.30.self_attn.v_proj.biases": "model.safetensors",
|
586 |
+
"model.layers.30.self_attn.v_proj.scales": "model.safetensors",
|
587 |
+
"model.layers.30.self_attn.v_proj.weight": "model.safetensors",
|
588 |
+
"model.layers.31.input_layernorm.weight": "model.safetensors",
|
589 |
+
"model.layers.31.mlp.down_proj.biases": "model.safetensors",
|
590 |
+
"model.layers.31.mlp.down_proj.scales": "model.safetensors",
|
591 |
+
"model.layers.31.mlp.down_proj.weight": "model.safetensors",
|
592 |
+
"model.layers.31.mlp.gate_proj.biases": "model.safetensors",
|
593 |
+
"model.layers.31.mlp.gate_proj.scales": "model.safetensors",
|
594 |
+
"model.layers.31.mlp.gate_proj.weight": "model.safetensors",
|
595 |
+
"model.layers.31.mlp.up_proj.biases": "model.safetensors",
|
596 |
+
"model.layers.31.mlp.up_proj.scales": "model.safetensors",
|
597 |
+
"model.layers.31.mlp.up_proj.weight": "model.safetensors",
|
598 |
+
"model.layers.31.post_attention_layernorm.weight": "model.safetensors",
|
599 |
+
"model.layers.31.self_attn.k_proj.biases": "model.safetensors",
|
600 |
+
"model.layers.31.self_attn.k_proj.scales": "model.safetensors",
|
601 |
+
"model.layers.31.self_attn.k_proj.weight": "model.safetensors",
|
602 |
+
"model.layers.31.self_attn.o_proj.biases": "model.safetensors",
|
603 |
+
"model.layers.31.self_attn.o_proj.scales": "model.safetensors",
|
604 |
+
"model.layers.31.self_attn.o_proj.weight": "model.safetensors",
|
605 |
+
"model.layers.31.self_attn.q_proj.biases": "model.safetensors",
|
606 |
+
"model.layers.31.self_attn.q_proj.scales": "model.safetensors",
|
607 |
+
"model.layers.31.self_attn.q_proj.weight": "model.safetensors",
|
608 |
+
"model.layers.31.self_attn.v_proj.biases": "model.safetensors",
|
609 |
+
"model.layers.31.self_attn.v_proj.scales": "model.safetensors",
|
610 |
+
"model.layers.31.self_attn.v_proj.weight": "model.safetensors",
|
611 |
+
"model.layers.4.input_layernorm.weight": "model.safetensors",
|
612 |
+
"model.layers.4.mlp.down_proj.biases": "model.safetensors",
|
613 |
+
"model.layers.4.mlp.down_proj.scales": "model.safetensors",
|
614 |
+
"model.layers.4.mlp.down_proj.weight": "model.safetensors",
|
615 |
+
"model.layers.4.mlp.gate_proj.biases": "model.safetensors",
|
616 |
+
"model.layers.4.mlp.gate_proj.scales": "model.safetensors",
|
617 |
+
"model.layers.4.mlp.gate_proj.weight": "model.safetensors",
|
618 |
+
"model.layers.4.mlp.up_proj.biases": "model.safetensors",
|
619 |
+
"model.layers.4.mlp.up_proj.scales": "model.safetensors",
|
620 |
+
"model.layers.4.mlp.up_proj.weight": "model.safetensors",
|
621 |
+
"model.layers.4.post_attention_layernorm.weight": "model.safetensors",
|
622 |
+
"model.layers.4.self_attn.k_proj.biases": "model.safetensors",
|
623 |
+
"model.layers.4.self_attn.k_proj.scales": "model.safetensors",
|
624 |
+
"model.layers.4.self_attn.k_proj.weight": "model.safetensors",
|
625 |
+
"model.layers.4.self_attn.o_proj.biases": "model.safetensors",
|
626 |
+
"model.layers.4.self_attn.o_proj.scales": "model.safetensors",
|
627 |
+
"model.layers.4.self_attn.o_proj.weight": "model.safetensors",
|
628 |
+
"model.layers.4.self_attn.q_proj.biases": "model.safetensors",
|
629 |
+
"model.layers.4.self_attn.q_proj.scales": "model.safetensors",
|
630 |
+
"model.layers.4.self_attn.q_proj.weight": "model.safetensors",
|
631 |
+
"model.layers.4.self_attn.v_proj.biases": "model.safetensors",
|
632 |
+
"model.layers.4.self_attn.v_proj.scales": "model.safetensors",
|
633 |
+
"model.layers.4.self_attn.v_proj.weight": "model.safetensors",
|
634 |
+
"model.layers.5.input_layernorm.weight": "model.safetensors",
|
635 |
+
"model.layers.5.mlp.down_proj.biases": "model.safetensors",
|
636 |
+
"model.layers.5.mlp.down_proj.scales": "model.safetensors",
|
637 |
+
"model.layers.5.mlp.down_proj.weight": "model.safetensors",
|
638 |
+
"model.layers.5.mlp.gate_proj.biases": "model.safetensors",
|
639 |
+
"model.layers.5.mlp.gate_proj.scales": "model.safetensors",
|
640 |
+
"model.layers.5.mlp.gate_proj.weight": "model.safetensors",
|
641 |
+
"model.layers.5.mlp.up_proj.biases": "model.safetensors",
|
642 |
+
"model.layers.5.mlp.up_proj.scales": "model.safetensors",
|
643 |
+
"model.layers.5.mlp.up_proj.weight": "model.safetensors",
|
644 |
+
"model.layers.5.post_attention_layernorm.weight": "model.safetensors",
|
645 |
+
"model.layers.5.self_attn.k_proj.biases": "model.safetensors",
|
646 |
+
"model.layers.5.self_attn.k_proj.scales": "model.safetensors",
|
647 |
+
"model.layers.5.self_attn.k_proj.weight": "model.safetensors",
|
648 |
+
"model.layers.5.self_attn.o_proj.biases": "model.safetensors",
|
649 |
+
"model.layers.5.self_attn.o_proj.scales": "model.safetensors",
|
650 |
+
"model.layers.5.self_attn.o_proj.weight": "model.safetensors",
|
651 |
+
"model.layers.5.self_attn.q_proj.biases": "model.safetensors",
|
652 |
+
"model.layers.5.self_attn.q_proj.scales": "model.safetensors",
|
653 |
+
"model.layers.5.self_attn.q_proj.weight": "model.safetensors",
|
654 |
+
"model.layers.5.self_attn.v_proj.biases": "model.safetensors",
|
655 |
+
"model.layers.5.self_attn.v_proj.scales": "model.safetensors",
|
656 |
+
"model.layers.5.self_attn.v_proj.weight": "model.safetensors",
|
657 |
+
"model.layers.6.input_layernorm.weight": "model.safetensors",
|
658 |
+
"model.layers.6.mlp.down_proj.biases": "model.safetensors",
|
659 |
+
"model.layers.6.mlp.down_proj.scales": "model.safetensors",
|
660 |
+
"model.layers.6.mlp.down_proj.weight": "model.safetensors",
|
661 |
+
"model.layers.6.mlp.gate_proj.biases": "model.safetensors",
|
662 |
+
"model.layers.6.mlp.gate_proj.scales": "model.safetensors",
|
663 |
+
"model.layers.6.mlp.gate_proj.weight": "model.safetensors",
|
664 |
+
"model.layers.6.mlp.up_proj.biases": "model.safetensors",
|
665 |
+
"model.layers.6.mlp.up_proj.scales": "model.safetensors",
|
666 |
+
"model.layers.6.mlp.up_proj.weight": "model.safetensors",
|
667 |
+
"model.layers.6.post_attention_layernorm.weight": "model.safetensors",
|
668 |
+
"model.layers.6.self_attn.k_proj.biases": "model.safetensors",
|
669 |
+
"model.layers.6.self_attn.k_proj.scales": "model.safetensors",
|
670 |
+
"model.layers.6.self_attn.k_proj.weight": "model.safetensors",
|
671 |
+
"model.layers.6.self_attn.o_proj.biases": "model.safetensors",
|
672 |
+
"model.layers.6.self_attn.o_proj.scales": "model.safetensors",
|
673 |
+
"model.layers.6.self_attn.o_proj.weight": "model.safetensors",
|
674 |
+
"model.layers.6.self_attn.q_proj.biases": "model.safetensors",
|
675 |
+
"model.layers.6.self_attn.q_proj.scales": "model.safetensors",
|
676 |
+
"model.layers.6.self_attn.q_proj.weight": "model.safetensors",
|
677 |
+
"model.layers.6.self_attn.v_proj.biases": "model.safetensors",
|
678 |
+
"model.layers.6.self_attn.v_proj.scales": "model.safetensors",
|
679 |
+
"model.layers.6.self_attn.v_proj.weight": "model.safetensors",
|
680 |
+
"model.layers.7.input_layernorm.weight": "model.safetensors",
|
681 |
+
"model.layers.7.mlp.down_proj.biases": "model.safetensors",
|
682 |
+
"model.layers.7.mlp.down_proj.scales": "model.safetensors",
|
683 |
+
"model.layers.7.mlp.down_proj.weight": "model.safetensors",
|
684 |
+
"model.layers.7.mlp.gate_proj.biases": "model.safetensors",
|
685 |
+
"model.layers.7.mlp.gate_proj.scales": "model.safetensors",
|
686 |
+
"model.layers.7.mlp.gate_proj.weight": "model.safetensors",
|
687 |
+
"model.layers.7.mlp.up_proj.biases": "model.safetensors",
|
688 |
+
"model.layers.7.mlp.up_proj.scales": "model.safetensors",
|
689 |
+
"model.layers.7.mlp.up_proj.weight": "model.safetensors",
|
690 |
+
"model.layers.7.post_attention_layernorm.weight": "model.safetensors",
|
691 |
+
"model.layers.7.self_attn.k_proj.biases": "model.safetensors",
|
692 |
+
"model.layers.7.self_attn.k_proj.scales": "model.safetensors",
|
693 |
+
"model.layers.7.self_attn.k_proj.weight": "model.safetensors",
|
694 |
+
"model.layers.7.self_attn.o_proj.biases": "model.safetensors",
|
695 |
+
"model.layers.7.self_attn.o_proj.scales": "model.safetensors",
|
696 |
+
"model.layers.7.self_attn.o_proj.weight": "model.safetensors",
|
697 |
+
"model.layers.7.self_attn.q_proj.biases": "model.safetensors",
|
698 |
+
"model.layers.7.self_attn.q_proj.scales": "model.safetensors",
|
699 |
+
"model.layers.7.self_attn.q_proj.weight": "model.safetensors",
|
700 |
+
"model.layers.7.self_attn.v_proj.biases": "model.safetensors",
|
701 |
+
"model.layers.7.self_attn.v_proj.scales": "model.safetensors",
|
702 |
+
"model.layers.7.self_attn.v_proj.weight": "model.safetensors",
|
703 |
+
"model.layers.8.input_layernorm.weight": "model.safetensors",
|
704 |
+
"model.layers.8.mlp.down_proj.biases": "model.safetensors",
|
705 |
+
"model.layers.8.mlp.down_proj.scales": "model.safetensors",
|
706 |
+
"model.layers.8.mlp.down_proj.weight": "model.safetensors",
|
707 |
+
"model.layers.8.mlp.gate_proj.biases": "model.safetensors",
|
708 |
+
"model.layers.8.mlp.gate_proj.scales": "model.safetensors",
|
709 |
+
"model.layers.8.mlp.gate_proj.weight": "model.safetensors",
|
710 |
+
"model.layers.8.mlp.up_proj.biases": "model.safetensors",
|
711 |
+
"model.layers.8.mlp.up_proj.scales": "model.safetensors",
|
712 |
+
"model.layers.8.mlp.up_proj.weight": "model.safetensors",
|
713 |
+
"model.layers.8.post_attention_layernorm.weight": "model.safetensors",
|
714 |
+
"model.layers.8.self_attn.k_proj.biases": "model.safetensors",
|
715 |
+
"model.layers.8.self_attn.k_proj.scales": "model.safetensors",
|
716 |
+
"model.layers.8.self_attn.k_proj.weight": "model.safetensors",
|
717 |
+
"model.layers.8.self_attn.o_proj.biases": "model.safetensors",
|
718 |
+
"model.layers.8.self_attn.o_proj.scales": "model.safetensors",
|
719 |
+
"model.layers.8.self_attn.o_proj.weight": "model.safetensors",
|
720 |
+
"model.layers.8.self_attn.q_proj.biases": "model.safetensors",
|
721 |
+
"model.layers.8.self_attn.q_proj.scales": "model.safetensors",
|
722 |
+
"model.layers.8.self_attn.q_proj.weight": "model.safetensors",
|
723 |
+
"model.layers.8.self_attn.v_proj.biases": "model.safetensors",
|
724 |
+
"model.layers.8.self_attn.v_proj.scales": "model.safetensors",
|
725 |
+
"model.layers.8.self_attn.v_proj.weight": "model.safetensors",
|
726 |
+
"model.layers.9.input_layernorm.weight": "model.safetensors",
|
727 |
+
"model.layers.9.mlp.down_proj.biases": "model.safetensors",
|
728 |
+
"model.layers.9.mlp.down_proj.scales": "model.safetensors",
|
729 |
+
"model.layers.9.mlp.down_proj.weight": "model.safetensors",
|
730 |
+
"model.layers.9.mlp.gate_proj.biases": "model.safetensors",
|
731 |
+
"model.layers.9.mlp.gate_proj.scales": "model.safetensors",
|
732 |
+
"model.layers.9.mlp.gate_proj.weight": "model.safetensors",
|
733 |
+
"model.layers.9.mlp.up_proj.biases": "model.safetensors",
|
734 |
+
"model.layers.9.mlp.up_proj.scales": "model.safetensors",
|
735 |
+
"model.layers.9.mlp.up_proj.weight": "model.safetensors",
|
736 |
+
"model.layers.9.post_attention_layernorm.weight": "model.safetensors",
|
737 |
+
"model.layers.9.self_attn.k_proj.biases": "model.safetensors",
|
738 |
+
"model.layers.9.self_attn.k_proj.scales": "model.safetensors",
|
739 |
+
"model.layers.9.self_attn.k_proj.weight": "model.safetensors",
|
740 |
+
"model.layers.9.self_attn.o_proj.biases": "model.safetensors",
|
741 |
+
"model.layers.9.self_attn.o_proj.scales": "model.safetensors",
|
742 |
+
"model.layers.9.self_attn.o_proj.weight": "model.safetensors",
|
743 |
+
"model.layers.9.self_attn.q_proj.biases": "model.safetensors",
|
744 |
+
"model.layers.9.self_attn.q_proj.scales": "model.safetensors",
|
745 |
+
"model.layers.9.self_attn.q_proj.weight": "model.safetensors",
|
746 |
+
"model.layers.9.self_attn.v_proj.biases": "model.safetensors",
|
747 |
+
"model.layers.9.self_attn.v_proj.scales": "model.safetensors",
|
748 |
+
"model.layers.9.self_attn.v_proj.weight": "model.safetensors",
|
749 |
+
"model.norm.weight": "model.safetensors"
|
750 |
+
}
|
751 |
+
}
|
modeling_minicpm.py
ADDED
@@ -0,0 +1,968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# encoding: utf-8
|
3 |
+
|
4 |
+
# coding=utf-8
|
5 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
6 |
+
#
|
7 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
8 |
+
# and OPT implementations in this library. It has been modified from its
|
9 |
+
# original forms to accommodate minor architectural differences compared
|
10 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
11 |
+
#
|
12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
13 |
+
# you may not use this file except in compliance with the License.
|
14 |
+
# You may obtain a copy of the License at
|
15 |
+
#
|
16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
17 |
+
#
|
18 |
+
# Unless required by applicable law or agreed to in writing, software
|
19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21 |
+
# See the License for the specific language governing permissions and
|
22 |
+
# limitations under the License.
|
23 |
+
from typing import Callable, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import math
|
26 |
+
import torch
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.generation import GenerationMixin
|
33 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
35 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPast,
|
38 |
+
CausalLMOutputWithPast,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
44 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
45 |
+
from transformers.processing_utils import Unpack
|
46 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
47 |
+
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
48 |
+
from .configuration_minicpm import MiniCPMConfig
|
49 |
+
|
50 |
+
|
51 |
+
if is_torch_flex_attn_available():
|
52 |
+
from torch.nn.attention.flex_attention import BlockMask
|
53 |
+
|
54 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
55 |
+
|
56 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
63 |
+
class MiniCPMRMSNorm(nn.Module):
|
64 |
+
def __init__(self, hidden_size, eps=1e-6):
|
65 |
+
"""
|
66 |
+
MiniCPMRMSNorm is equivalent to T5LayerNorm
|
67 |
+
"""
|
68 |
+
super().__init__()
|
69 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
70 |
+
self.variance_epsilon = eps
|
71 |
+
|
72 |
+
def forward(self, hidden_states):
|
73 |
+
input_dtype = hidden_states.dtype
|
74 |
+
hidden_states = hidden_states.to(torch.float32)
|
75 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
76 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
77 |
+
return self.weight * hidden_states.to(input_dtype)
|
78 |
+
|
79 |
+
def extra_repr(self):
|
80 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
81 |
+
|
82 |
+
|
83 |
+
ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
|
84 |
+
|
85 |
+
|
86 |
+
class MiniCPMRotaryEmbedding(nn.Module):
|
87 |
+
def __init__(self, config: MiniCPMConfig, device=None):
|
88 |
+
super().__init__()
|
89 |
+
# BC: "rope_type" was originally "type"
|
90 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
91 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
92 |
+
else:
|
93 |
+
self.rope_type = "default"
|
94 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
95 |
+
self.original_max_seq_len = config.max_position_embeddings
|
96 |
+
|
97 |
+
self.config = config
|
98 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
99 |
+
|
100 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
101 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
102 |
+
self.original_inv_freq = self.inv_freq
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
106 |
+
def forward(self, x, position_ids):
|
107 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
108 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
109 |
+
|
110 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
111 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
112 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
113 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
114 |
+
cos = emb.cos() * self.attention_scaling
|
115 |
+
sin = emb.sin() * self.attention_scaling
|
116 |
+
|
117 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
118 |
+
|
119 |
+
|
120 |
+
def rotate_half(x):
|
121 |
+
"""Rotates half the hidden dims of the input."""
|
122 |
+
x1 = x[..., : x.shape[-1] // 2]
|
123 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
124 |
+
return torch.cat((-x2, x1), dim=-1)
|
125 |
+
|
126 |
+
|
127 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
128 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
q (`torch.Tensor`): The query tensor.
|
132 |
+
k (`torch.Tensor`): The key tensor.
|
133 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
134 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
135 |
+
position_ids (`torch.Tensor`, *optional*):
|
136 |
+
Deprecated and unused.
|
137 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
138 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
139 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
140 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
141 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
142 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
143 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
144 |
+
Returns:
|
145 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
146 |
+
"""
|
147 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
148 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
149 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
150 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
151 |
+
return q_embed, k_embed
|
152 |
+
|
153 |
+
|
154 |
+
class MiniCPMMLP(nn.Module):
|
155 |
+
def __init__(self, config):
|
156 |
+
super().__init__()
|
157 |
+
self.config = config
|
158 |
+
self.hidden_size = config.hidden_size
|
159 |
+
self.intermediate_size = config.intermediate_size
|
160 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
161 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
162 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
163 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
167 |
+
return down_proj
|
168 |
+
|
169 |
+
|
170 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
171 |
+
"""
|
172 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
173 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
174 |
+
"""
|
175 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
176 |
+
if n_rep == 1:
|
177 |
+
return hidden_states
|
178 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
179 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
180 |
+
|
181 |
+
|
182 |
+
def eager_attention_forward(
|
183 |
+
module: nn.Module,
|
184 |
+
query: torch.Tensor,
|
185 |
+
key: torch.Tensor,
|
186 |
+
value: torch.Tensor,
|
187 |
+
attention_mask: Optional[torch.Tensor],
|
188 |
+
scaling: float,
|
189 |
+
dropout: float = 0.0,
|
190 |
+
**kwargs,
|
191 |
+
):
|
192 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
193 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
194 |
+
|
195 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
196 |
+
if attention_mask is not None:
|
197 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
198 |
+
attn_weights = attn_weights + causal_mask
|
199 |
+
|
200 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
201 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
202 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
203 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
204 |
+
|
205 |
+
return attn_output, attn_weights
|
206 |
+
|
207 |
+
|
208 |
+
class MiniCPMAttention(nn.Module):
|
209 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
210 |
+
|
211 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: int):
|
212 |
+
super().__init__()
|
213 |
+
self.config = config
|
214 |
+
self.layer_idx = layer_idx
|
215 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
216 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
217 |
+
self.scaling = self.head_dim**-0.5
|
218 |
+
self.attention_dropout = config.attention_dropout
|
219 |
+
self.is_causal = True
|
220 |
+
|
221 |
+
self.q_proj = nn.Linear(
|
222 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
223 |
+
)
|
224 |
+
self.k_proj = nn.Linear(
|
225 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
226 |
+
)
|
227 |
+
self.v_proj = nn.Linear(
|
228 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
229 |
+
)
|
230 |
+
self.o_proj = nn.Linear(
|
231 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
232 |
+
)
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
hidden_states: torch.Tensor,
|
237 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
238 |
+
attention_mask: Optional[torch.Tensor],
|
239 |
+
past_key_value: Optional[Cache] = None,
|
240 |
+
cache_position: Optional[torch.LongTensor] = None,
|
241 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
242 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
243 |
+
input_shape = hidden_states.shape[:-1]
|
244 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
245 |
+
|
246 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
247 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
248 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
249 |
+
|
250 |
+
cos, sin = position_embeddings
|
251 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
252 |
+
|
253 |
+
if past_key_value is not None:
|
254 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
255 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
256 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
257 |
+
|
258 |
+
attention_interface: Callable = eager_attention_forward
|
259 |
+
|
260 |
+
if self.config._attn_implementation != "eager":
|
261 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
262 |
+
logger.warning_once(
|
263 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
264 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
268 |
+
|
269 |
+
attn_output, attn_weights = attention_interface(
|
270 |
+
self,
|
271 |
+
query_states,
|
272 |
+
key_states,
|
273 |
+
value_states,
|
274 |
+
attention_mask,
|
275 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
276 |
+
scaling=self.scaling,
|
277 |
+
**kwargs,
|
278 |
+
)
|
279 |
+
|
280 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
281 |
+
attn_output = self.o_proj(attn_output)
|
282 |
+
return attn_output, attn_weights
|
283 |
+
|
284 |
+
|
285 |
+
class MiniCPMDecoderLayer(GradientCheckpointingLayer):
|
286 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: int):
|
287 |
+
super().__init__()
|
288 |
+
self.hidden_size = config.hidden_size
|
289 |
+
|
290 |
+
self.self_attn = MiniCPMAttention(config=config, layer_idx=layer_idx)
|
291 |
+
|
292 |
+
self.mlp = MiniCPMMLP(config)
|
293 |
+
self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
294 |
+
self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
295 |
+
|
296 |
+
self.scale_depth = config.scale_depth
|
297 |
+
self.num_hidden_layers = config.num_hidden_layers
|
298 |
+
|
299 |
+
def forward(
|
300 |
+
self,
|
301 |
+
hidden_states: torch.Tensor,
|
302 |
+
attention_mask: Optional[torch.Tensor] = None,
|
303 |
+
position_ids: Optional[torch.LongTensor] = None,
|
304 |
+
past_key_value: Optional[Cache] = None,
|
305 |
+
output_attentions: Optional[bool] = False,
|
306 |
+
use_cache: Optional[bool] = False,
|
307 |
+
cache_position: Optional[torch.LongTensor] = None,
|
308 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
309 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
310 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
311 |
+
residual = hidden_states
|
312 |
+
hidden_states = self.input_layernorm(hidden_states)
|
313 |
+
|
314 |
+
# Self Attention
|
315 |
+
hidden_states, self_attn_weights = self.self_attn(
|
316 |
+
hidden_states=hidden_states,
|
317 |
+
attention_mask=attention_mask,
|
318 |
+
position_ids=position_ids,
|
319 |
+
past_key_value=past_key_value,
|
320 |
+
output_attentions=output_attentions,
|
321 |
+
use_cache=use_cache,
|
322 |
+
cache_position=cache_position,
|
323 |
+
position_embeddings=position_embeddings,
|
324 |
+
**kwargs,
|
325 |
+
)
|
326 |
+
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
327 |
+
|
328 |
+
# Fully Connected
|
329 |
+
residual = hidden_states
|
330 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
331 |
+
hidden_states = self.mlp(hidden_states)
|
332 |
+
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
333 |
+
|
334 |
+
outputs = (hidden_states,)
|
335 |
+
if output_attentions:
|
336 |
+
outputs += (self_attn_weights,)
|
337 |
+
|
338 |
+
return outputs
|
339 |
+
|
340 |
+
|
341 |
+
@auto_docstring
|
342 |
+
class MiniCPMPreTrainedModel(PreTrainedModel):
|
343 |
+
config_class = MiniCPMConfig
|
344 |
+
base_model_prefix = "model"
|
345 |
+
supports_gradient_checkpointing = True
|
346 |
+
_no_split_modules = ["MiniCPMDecoderLayer"]
|
347 |
+
_skip_keys_device_placement = ["past_key_values"]
|
348 |
+
_supports_flash_attn_2 = True
|
349 |
+
_supports_sdpa = True
|
350 |
+
_supports_flex_attn = True
|
351 |
+
_supports_cache_class = True
|
352 |
+
_supports_quantized_cache = True
|
353 |
+
_supports_static_cache = True
|
354 |
+
_supports_attention_backend = True
|
355 |
+
|
356 |
+
def _init_weights(self, module):
|
357 |
+
std = self.config.initializer_range
|
358 |
+
if isinstance(module, nn.Linear):
|
359 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
360 |
+
if module.bias is not None:
|
361 |
+
module.bias.data.zero_()
|
362 |
+
elif isinstance(module, nn.Embedding):
|
363 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
364 |
+
if module.padding_idx is not None:
|
365 |
+
module.weight.data[module.padding_idx].zero_()
|
366 |
+
elif isinstance(module, MiniCPMRMSNorm):
|
367 |
+
module.weight.data.fill_(1.0)
|
368 |
+
|
369 |
+
|
370 |
+
@auto_docstring
|
371 |
+
class MiniCPMModel(MiniCPMPreTrainedModel):
|
372 |
+
def __init__(self, config: MiniCPMConfig):
|
373 |
+
super().__init__(config)
|
374 |
+
self.padding_idx = config.pad_token_id
|
375 |
+
self.vocab_size = config.vocab_size
|
376 |
+
|
377 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
378 |
+
self.layers = nn.ModuleList(
|
379 |
+
[MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
380 |
+
)
|
381 |
+
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
382 |
+
self.rotary_emb = MiniCPMRotaryEmbedding(config=config)
|
383 |
+
self.gradient_checkpointing = False
|
384 |
+
|
385 |
+
# Initialize weights and apply final processing
|
386 |
+
self.post_init()
|
387 |
+
|
388 |
+
def get_input_embeddings(self):
|
389 |
+
return self.embed_tokens
|
390 |
+
|
391 |
+
def set_input_embeddings(self, value):
|
392 |
+
self.embed_tokens = value
|
393 |
+
|
394 |
+
@can_return_tuple
|
395 |
+
@auto_docstring
|
396 |
+
def forward(
|
397 |
+
self,
|
398 |
+
input_ids: Optional[torch.LongTensor] = None,
|
399 |
+
attention_mask: Optional[torch.Tensor] = None,
|
400 |
+
position_ids: Optional[torch.LongTensor] = None,
|
401 |
+
past_key_values: Optional[Cache] = None,
|
402 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
403 |
+
use_cache: Optional[bool] = None,
|
404 |
+
output_attentions: Optional[bool] = None,
|
405 |
+
output_hidden_states: Optional[bool] = None,
|
406 |
+
cache_position: Optional[torch.LongTensor] = None,
|
407 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
408 |
+
) -> BaseModelOutputWithPast:
|
409 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
410 |
+
output_hidden_states = (
|
411 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
412 |
+
)
|
413 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
414 |
+
|
415 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
416 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
417 |
+
|
418 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
419 |
+
logger.warning_once(
|
420 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
421 |
+
)
|
422 |
+
use_cache = False
|
423 |
+
|
424 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
425 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
426 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
427 |
+
|
428 |
+
if inputs_embeds is None:
|
429 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
|
430 |
+
|
431 |
+
if use_cache and past_key_values is None:
|
432 |
+
past_key_values = DynamicCache()
|
433 |
+
|
434 |
+
if cache_position is None:
|
435 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
436 |
+
cache_position = torch.arange(
|
437 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
438 |
+
)
|
439 |
+
|
440 |
+
if position_ids is None:
|
441 |
+
position_ids = cache_position.unsqueeze(0)
|
442 |
+
|
443 |
+
causal_mask = self._update_causal_mask(
|
444 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
445 |
+
)
|
446 |
+
|
447 |
+
hidden_states = inputs_embeds
|
448 |
+
|
449 |
+
# create position embeddings to be shared across the decoder layers
|
450 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
451 |
+
|
452 |
+
# decoder layers
|
453 |
+
all_hidden_states = () if output_hidden_states else None
|
454 |
+
all_self_attns = () if output_attentions else None
|
455 |
+
|
456 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
457 |
+
if output_hidden_states:
|
458 |
+
all_hidden_states += (hidden_states,)
|
459 |
+
|
460 |
+
layer_outputs = decoder_layer(
|
461 |
+
hidden_states,
|
462 |
+
attention_mask=causal_mask,
|
463 |
+
position_ids=position_ids,
|
464 |
+
past_key_value=past_key_values,
|
465 |
+
output_attentions=output_attentions,
|
466 |
+
use_cache=use_cache,
|
467 |
+
cache_position=cache_position,
|
468 |
+
position_embeddings=position_embeddings,
|
469 |
+
**flash_attn_kwargs,
|
470 |
+
)
|
471 |
+
|
472 |
+
hidden_states = layer_outputs[0]
|
473 |
+
|
474 |
+
if output_attentions:
|
475 |
+
all_self_attns += (layer_outputs[1],)
|
476 |
+
|
477 |
+
hidden_states = self.norm(hidden_states)
|
478 |
+
|
479 |
+
# add hidden states from the last decoder layer
|
480 |
+
if output_hidden_states:
|
481 |
+
all_hidden_states += (hidden_states,)
|
482 |
+
|
483 |
+
return BaseModelOutputWithPast(
|
484 |
+
last_hidden_state=hidden_states,
|
485 |
+
past_key_values=past_key_values if use_cache else None,
|
486 |
+
hidden_states=all_hidden_states,
|
487 |
+
attentions=all_self_attns,
|
488 |
+
)
|
489 |
+
|
490 |
+
def _update_causal_mask(
|
491 |
+
self,
|
492 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
493 |
+
input_tensor: torch.Tensor,
|
494 |
+
cache_position: torch.Tensor,
|
495 |
+
past_key_values: Cache,
|
496 |
+
output_attentions: bool = False,
|
497 |
+
):
|
498 |
+
if self.config._attn_implementation == "flash_attention_2":
|
499 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
500 |
+
return attention_mask
|
501 |
+
return None
|
502 |
+
if self.config._attn_implementation == "flex_attention":
|
503 |
+
if isinstance(attention_mask, torch.Tensor):
|
504 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
505 |
+
return attention_mask
|
506 |
+
|
507 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
508 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
509 |
+
# to infer the attention mask.
|
510 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
511 |
+
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
512 |
+
|
513 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
514 |
+
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
515 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
516 |
+
attention_mask,
|
517 |
+
inputs_embeds=input_tensor,
|
518 |
+
past_key_values_length=past_seen_tokens,
|
519 |
+
is_training=self.training,
|
520 |
+
):
|
521 |
+
return None
|
522 |
+
|
523 |
+
dtype = input_tensor.dtype
|
524 |
+
sequence_length = input_tensor.shape[1]
|
525 |
+
if using_compilable_cache:
|
526 |
+
target_length = past_key_values.get_max_cache_shape()
|
527 |
+
else:
|
528 |
+
target_length = (
|
529 |
+
attention_mask.shape[-1]
|
530 |
+
if isinstance(attention_mask, torch.Tensor)
|
531 |
+
else past_seen_tokens + sequence_length + 1
|
532 |
+
)
|
533 |
+
|
534 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
535 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
536 |
+
attention_mask,
|
537 |
+
sequence_length=sequence_length,
|
538 |
+
target_length=target_length,
|
539 |
+
dtype=dtype,
|
540 |
+
cache_position=cache_position,
|
541 |
+
batch_size=input_tensor.shape[0],
|
542 |
+
)
|
543 |
+
|
544 |
+
if (
|
545 |
+
self.config._attn_implementation == "sdpa"
|
546 |
+
and attention_mask is not None
|
547 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
548 |
+
and not output_attentions
|
549 |
+
):
|
550 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
551 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
552 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
553 |
+
min_dtype = torch.finfo(dtype).min
|
554 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
555 |
+
|
556 |
+
return causal_mask
|
557 |
+
|
558 |
+
@staticmethod
|
559 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
560 |
+
attention_mask: torch.Tensor,
|
561 |
+
sequence_length: int,
|
562 |
+
target_length: int,
|
563 |
+
dtype: torch.dtype,
|
564 |
+
cache_position: torch.Tensor,
|
565 |
+
batch_size: int,
|
566 |
+
**kwargs,
|
567 |
+
):
|
568 |
+
"""
|
569 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
570 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
attention_mask (`torch.Tensor`):
|
574 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
575 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
576 |
+
sequence_length (`int`):
|
577 |
+
The sequence length being processed.
|
578 |
+
target_length (`int`):
|
579 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
580 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
581 |
+
dtype (`torch.dtype`):
|
582 |
+
The dtype to use for the 4D attention mask.
|
583 |
+
cache_position (`torch.Tensor`):
|
584 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
585 |
+
batch_size (`torch.Tensor`):
|
586 |
+
Batch size.
|
587 |
+
"""
|
588 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
589 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
590 |
+
causal_mask = attention_mask
|
591 |
+
else:
|
592 |
+
min_dtype = torch.finfo(dtype).min
|
593 |
+
causal_mask = torch.full(
|
594 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
595 |
+
)
|
596 |
+
if sequence_length != 1:
|
597 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
598 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
599 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
600 |
+
if attention_mask is not None:
|
601 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
602 |
+
mask_length = attention_mask.shape[-1]
|
603 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
604 |
+
causal_mask.device
|
605 |
+
)
|
606 |
+
padding_mask = padding_mask == 0
|
607 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
608 |
+
padding_mask, min_dtype
|
609 |
+
)
|
610 |
+
|
611 |
+
return causal_mask
|
612 |
+
|
613 |
+
|
614 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
615 |
+
|
616 |
+
|
617 |
+
@auto_docstring
|
618 |
+
class MiniCPMForCausalLM(MiniCPMPreTrainedModel, GenerationMixin):
|
619 |
+
_tied_weights_keys = ["lm_head.weight"]
|
620 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
621 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
622 |
+
|
623 |
+
def __init__(self, config):
|
624 |
+
super().__init__(config)
|
625 |
+
self.model = MiniCPMModel(config)
|
626 |
+
self.vocab_size = config.vocab_size
|
627 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
628 |
+
|
629 |
+
# Initialize weights and apply final processing
|
630 |
+
self.post_init()
|
631 |
+
|
632 |
+
def get_input_embeddings(self):
|
633 |
+
return self.model.embed_tokens
|
634 |
+
|
635 |
+
def set_input_embeddings(self, value):
|
636 |
+
self.model.embed_tokens = value
|
637 |
+
|
638 |
+
def get_output_embeddings(self):
|
639 |
+
return self.lm_head
|
640 |
+
|
641 |
+
def set_output_embeddings(self, new_embeddings):
|
642 |
+
self.lm_head = new_embeddings
|
643 |
+
|
644 |
+
def set_decoder(self, decoder):
|
645 |
+
self.model = decoder
|
646 |
+
|
647 |
+
def get_decoder(self):
|
648 |
+
return self.model
|
649 |
+
|
650 |
+
@can_return_tuple
|
651 |
+
@auto_docstring
|
652 |
+
def forward(
|
653 |
+
self,
|
654 |
+
input_ids: Optional[torch.LongTensor] = None,
|
655 |
+
attention_mask: Optional[torch.Tensor] = None,
|
656 |
+
position_ids: Optional[torch.LongTensor] = None,
|
657 |
+
past_key_values: Optional[Cache] = None,
|
658 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
659 |
+
labels: Optional[torch.LongTensor] = None,
|
660 |
+
use_cache: Optional[bool] = None,
|
661 |
+
output_attentions: Optional[bool] = None,
|
662 |
+
output_hidden_states: Optional[bool] = None,
|
663 |
+
cache_position: Optional[torch.LongTensor] = None,
|
664 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
665 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
666 |
+
) -> CausalLMOutputWithPast:
|
667 |
+
r"""
|
668 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
669 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
670 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
671 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
672 |
+
|
673 |
+
Example:
|
674 |
+
|
675 |
+
```python
|
676 |
+
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
|
677 |
+
|
678 |
+
>>> model = MiniCPMForCausalLM.from_pretrained("meta-MiniCPM/MiniCPM-2-7b-hf")
|
679 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-MiniCPM/MiniCPM-2-7b-hf")
|
680 |
+
|
681 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
682 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
683 |
+
|
684 |
+
>>> # Generate
|
685 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
686 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
687 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
688 |
+
```"""
|
689 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
690 |
+
output_hidden_states = (
|
691 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
692 |
+
)
|
693 |
+
|
694 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
695 |
+
outputs: BaseModelOutputWithPast = self.model(
|
696 |
+
input_ids=input_ids,
|
697 |
+
attention_mask=attention_mask,
|
698 |
+
position_ids=position_ids,
|
699 |
+
past_key_values=past_key_values,
|
700 |
+
inputs_embeds=inputs_embeds,
|
701 |
+
use_cache=use_cache,
|
702 |
+
output_attentions=output_attentions,
|
703 |
+
output_hidden_states=output_hidden_states,
|
704 |
+
cache_position=cache_position,
|
705 |
+
**kwargs,
|
706 |
+
)
|
707 |
+
|
708 |
+
hidden_states = outputs.last_hidden_state
|
709 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
710 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
711 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :] / (self.config.hidden_size / self.config.dim_model_base))
|
712 |
+
|
713 |
+
loss = None
|
714 |
+
if labels is not None:
|
715 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
716 |
+
|
717 |
+
return CausalLMOutputWithPast(
|
718 |
+
loss=loss,
|
719 |
+
logits=logits,
|
720 |
+
past_key_values=outputs.past_key_values,
|
721 |
+
hidden_states=outputs.hidden_states,
|
722 |
+
attentions=outputs.attentions,
|
723 |
+
)
|
724 |
+
|
725 |
+
|
726 |
+
@auto_docstring(
|
727 |
+
custom_intro="""
|
728 |
+
The MiniCPM Model transformer with a sequence classification head on top (linear layer).
|
729 |
+
|
730 |
+
[`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
731 |
+
(e.g. GPT-2) do.
|
732 |
+
|
733 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
734 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
735 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
736 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
737 |
+
each row of the batch).
|
738 |
+
"""
|
739 |
+
)
|
740 |
+
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
741 |
+
def __init__(self, config):
|
742 |
+
super().__init__(config)
|
743 |
+
self.num_labels = config.num_labels
|
744 |
+
self.model = MiniCPMModel(config)
|
745 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
746 |
+
|
747 |
+
# Initialize weights and apply final processing
|
748 |
+
self.post_init()
|
749 |
+
|
750 |
+
def get_input_embeddings(self):
|
751 |
+
return self.model.embed_tokens
|
752 |
+
|
753 |
+
def set_input_embeddings(self, value):
|
754 |
+
self.model.embed_tokens = value
|
755 |
+
|
756 |
+
@can_return_tuple
|
757 |
+
@auto_docstring
|
758 |
+
def forward(
|
759 |
+
self,
|
760 |
+
input_ids: Optional[torch.LongTensor] = None,
|
761 |
+
attention_mask: Optional[torch.Tensor] = None,
|
762 |
+
position_ids: Optional[torch.LongTensor] = None,
|
763 |
+
past_key_values: Optional[Cache] = None,
|
764 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
765 |
+
labels: Optional[torch.LongTensor] = None,
|
766 |
+
use_cache: Optional[bool] = None,
|
767 |
+
output_attentions: Optional[bool] = None,
|
768 |
+
output_hidden_states: Optional[bool] = None,
|
769 |
+
) -> SequenceClassifierOutputWithPast:
|
770 |
+
r"""
|
771 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
772 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
773 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
774 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
775 |
+
"""
|
776 |
+
|
777 |
+
transformer_outputs: BaseModelOutputWithPast = self.model(
|
778 |
+
input_ids,
|
779 |
+
attention_mask=attention_mask,
|
780 |
+
position_ids=position_ids,
|
781 |
+
past_key_values=past_key_values,
|
782 |
+
inputs_embeds=inputs_embeds,
|
783 |
+
use_cache=use_cache,
|
784 |
+
output_attentions=output_attentions,
|
785 |
+
output_hidden_states=output_hidden_states,
|
786 |
+
)
|
787 |
+
hidden_states = transformer_outputs.last_hidden_state
|
788 |
+
logits = self.score(hidden_states)
|
789 |
+
|
790 |
+
if input_ids is not None:
|
791 |
+
batch_size = input_ids.shape[0]
|
792 |
+
else:
|
793 |
+
batch_size = inputs_embeds.shape[0]
|
794 |
+
|
795 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
796 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
797 |
+
if self.config.pad_token_id is None:
|
798 |
+
last_non_pad_token = -1
|
799 |
+
elif input_ids is not None:
|
800 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
801 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
802 |
+
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
|
803 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
804 |
+
else:
|
805 |
+
last_non_pad_token = -1
|
806 |
+
logger.warning_once(
|
807 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
808 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
809 |
+
)
|
810 |
+
|
811 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
812 |
+
|
813 |
+
loss = None
|
814 |
+
if labels is not None:
|
815 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
816 |
+
|
817 |
+
return SequenceClassifierOutputWithPast(
|
818 |
+
loss=loss,
|
819 |
+
logits=pooled_logits,
|
820 |
+
past_key_values=transformer_outputs.past_key_values,
|
821 |
+
hidden_states=transformer_outputs.hidden_states,
|
822 |
+
attentions=transformer_outputs.attentions,
|
823 |
+
)
|
824 |
+
|
825 |
+
|
826 |
+
@auto_docstring
|
827 |
+
class MiniCPMForQuestionAnswering(MiniCPMPreTrainedModel):
|
828 |
+
base_model_prefix = "transformer"
|
829 |
+
|
830 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->MiniCPM
|
831 |
+
def __init__(self, config):
|
832 |
+
super().__init__(config)
|
833 |
+
self.transformer = MiniCPMModel(config)
|
834 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
835 |
+
|
836 |
+
# Initialize weights and apply final processing
|
837 |
+
self.post_init()
|
838 |
+
|
839 |
+
def get_input_embeddings(self):
|
840 |
+
return self.transformer.embed_tokens
|
841 |
+
|
842 |
+
def set_input_embeddings(self, value):
|
843 |
+
self.transformer.embed_tokens = value
|
844 |
+
|
845 |
+
@can_return_tuple
|
846 |
+
@auto_docstring
|
847 |
+
def forward(
|
848 |
+
self,
|
849 |
+
input_ids: Optional[torch.LongTensor] = None,
|
850 |
+
attention_mask: Optional[torch.Tensor] = None,
|
851 |
+
position_ids: Optional[torch.LongTensor] = None,
|
852 |
+
past_key_values: Optional[Cache] = None,
|
853 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
854 |
+
start_positions: Optional[torch.LongTensor] = None,
|
855 |
+
end_positions: Optional[torch.LongTensor] = None,
|
856 |
+
output_attentions: Optional[bool] = None,
|
857 |
+
output_hidden_states: Optional[bool] = None,
|
858 |
+
**kwargs,
|
859 |
+
) -> QuestionAnsweringModelOutput:
|
860 |
+
outputs: BaseModelOutputWithPast = self.transformer(
|
861 |
+
input_ids,
|
862 |
+
attention_mask=attention_mask,
|
863 |
+
position_ids=position_ids,
|
864 |
+
past_key_values=past_key_values,
|
865 |
+
inputs_embeds=inputs_embeds,
|
866 |
+
output_attentions=output_attentions,
|
867 |
+
output_hidden_states=output_hidden_states,
|
868 |
+
)
|
869 |
+
|
870 |
+
sequence_output = outputs.last_hidden_state
|
871 |
+
|
872 |
+
logits = self.qa_outputs(sequence_output)
|
873 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
874 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
875 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
876 |
+
|
877 |
+
loss = None
|
878 |
+
if start_positions is not None and end_positions is not None:
|
879 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
880 |
+
|
881 |
+
return QuestionAnsweringModelOutput(
|
882 |
+
loss=loss,
|
883 |
+
start_logits=start_logits,
|
884 |
+
end_logits=end_logits,
|
885 |
+
hidden_states=outputs.hidden_states,
|
886 |
+
attentions=outputs.attentions,
|
887 |
+
)
|
888 |
+
|
889 |
+
|
890 |
+
@auto_docstring
|
891 |
+
class MiniCPMForTokenClassification(MiniCPMPreTrainedModel):
|
892 |
+
def __init__(self, config):
|
893 |
+
super().__init__(config)
|
894 |
+
self.num_labels = config.num_labels
|
895 |
+
self.model = MiniCPMModel(config)
|
896 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
897 |
+
classifier_dropout = config.classifier_dropout
|
898 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
899 |
+
classifier_dropout = config.hidden_dropout
|
900 |
+
else:
|
901 |
+
classifier_dropout = 0.1
|
902 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
903 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
904 |
+
|
905 |
+
# Initialize weights and apply final processing
|
906 |
+
self.post_init()
|
907 |
+
|
908 |
+
def get_input_embeddings(self):
|
909 |
+
return self.model.embed_tokens
|
910 |
+
|
911 |
+
def set_input_embeddings(self, value):
|
912 |
+
self.model.embed_tokens = value
|
913 |
+
|
914 |
+
@can_return_tuple
|
915 |
+
@auto_docstring
|
916 |
+
def forward(
|
917 |
+
self,
|
918 |
+
input_ids: Optional[torch.LongTensor] = None,
|
919 |
+
attention_mask: Optional[torch.Tensor] = None,
|
920 |
+
position_ids: Optional[torch.LongTensor] = None,
|
921 |
+
past_key_values: Optional[Cache] = None,
|
922 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
923 |
+
labels: Optional[torch.LongTensor] = None,
|
924 |
+
use_cache: Optional[bool] = None,
|
925 |
+
output_attentions: Optional[bool] = None,
|
926 |
+
output_hidden_states: Optional[bool] = None,
|
927 |
+
) -> TokenClassifierOutput:
|
928 |
+
r"""
|
929 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
930 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
931 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
932 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
933 |
+
"""
|
934 |
+
|
935 |
+
outputs: BaseModelOutputWithPast = self.model(
|
936 |
+
input_ids,
|
937 |
+
attention_mask=attention_mask,
|
938 |
+
position_ids=position_ids,
|
939 |
+
past_key_values=past_key_values,
|
940 |
+
inputs_embeds=inputs_embeds,
|
941 |
+
use_cache=use_cache,
|
942 |
+
output_attentions=output_attentions,
|
943 |
+
output_hidden_states=output_hidden_states,
|
944 |
+
)
|
945 |
+
sequence_output = outputs.last_hidden_state
|
946 |
+
sequence_output = self.dropout(sequence_output)
|
947 |
+
logits = self.score(sequence_output)
|
948 |
+
|
949 |
+
loss = None
|
950 |
+
if labels is not None:
|
951 |
+
loss = self.loss_function(logits, labels, self.config)
|
952 |
+
|
953 |
+
return TokenClassifierOutput(
|
954 |
+
loss=loss,
|
955 |
+
logits=logits,
|
956 |
+
hidden_states=outputs.hidden_states,
|
957 |
+
attentions=outputs.attentions,
|
958 |
+
)
|
959 |
+
|
960 |
+
|
961 |
+
__all__ = [
|
962 |
+
"MiniCPMForCausalLM",
|
963 |
+
"MiniCPMModel",
|
964 |
+
"MiniCPMPreTrainedModel",
|
965 |
+
"MiniCPMForSequenceClassification",
|
966 |
+
"MiniCPMForQuestionAnswering",
|
967 |
+
"MiniCPMForTokenClassification",
|
968 |
+
]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>",
|
4 |
+
"<|im_start|>",
|
5 |
+
"<|tool_call|>",
|
6 |
+
"<|execute_start|>",
|
7 |
+
"<|execute_end|>",
|
8 |
+
"<|fim_prefix|>",
|
9 |
+
"<|fim_middle|>",
|
10 |
+
"<|fim_suffix|>"
|
11 |
+
],
|
12 |
+
"bos_token": {
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"eos_token": {
|
20 |
+
"content": "<|im_end|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"pad_token": {
|
27 |
+
"content": "<|im_end|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"unk_token": {
|
34 |
+
"content": "<unk>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
}
|
40 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
|
3 |
+
size 1181204
|
tokenizer_config.json
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"73440": {
|
31 |
+
"content": "<|im_end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"73441": {
|
39 |
+
"content": "<|im_start|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"73442": {
|
47 |
+
"content": "<|tool_call|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"73443": {
|
55 |
+
"content": "<|execute_start|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"73444": {
|
63 |
+
"content": "<|execute_end|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"73445": {
|
71 |
+
"content": "<|fim_prefix|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"73446": {
|
79 |
+
"content": "<|fim_middle|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"73447": {
|
87 |
+
"content": "<|fim_suffix|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"additional_special_tokens": [
|
96 |
+
"<|im_end|>",
|
97 |
+
"<|im_start|>",
|
98 |
+
"<|tool_call|>",
|
99 |
+
"<|execute_start|>",
|
100 |
+
"<|execute_end|>",
|
101 |
+
"<|fim_prefix|>",
|
102 |
+
"<|fim_middle|>",
|
103 |
+
"<|fim_suffix|>"
|
104 |
+
],
|
105 |
+
"bos_token": "<s>",
|
106 |
+
"clean_up_tokenization_spaces": false,
|
107 |
+
"eos_token": "<|im_end|>",
|
108 |
+
"extra_special_tokens": {},
|
109 |
+
"legacy": true,
|
110 |
+
"model_max_length": 1000000000000000019884624838656,
|
111 |
+
"pad_token": "<|im_end|>",
|
112 |
+
"sp_model_kwargs": {},
|
113 |
+
"spaces_between_special_tokens": false,
|
114 |
+
"tokenizer_class": "LlamaTokenizer",
|
115 |
+
"unk_token": "<unk>",
|
116 |
+
"use_default_system_prompt": false
|
117 |
+
}
|