speecht5-tts-01 / handler.py
TenzinGayche's picture
Update handler.py
0db7ad9
raw
history blame
4.29 kB
from typing import Dict, Any,Union
import tempfile
import numpy as np
import torch
import pyewts
import noisereduce as nr
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from num2tib.core import convert
from num2tib.core import convert2text
import soundfile as sf
import base64
import re
import requests
import os
from pydub import AudioSegment
def increase_volume_without_distortion(audio_data, sample_rate, target_dBFS):
# Create an AudioSegment from raw audio data
audio_segment = AudioSegment(
audio_data.tobytes(),
frame_rate=sample_rate,
sample_width=audio_data.dtype.itemsize,
channels=1 # or 2 for stereo
)
# Normalize the audio level
change_in_dBFS = target_dBFS - audio_segment.dBFS
normalized_audio = audio_segment.apply_gain(change_in_dBFS)
# Convert the AudioSegment back to a numpy array
normalized_audio_data = np.array(normalized_audio.get_array_of_samples()).astype(np.int16)
return normalized_audio_data
converter = pyewts.pyewts()
def download_file(url, destination):
response = requests.get(url)
with open(destination, 'wb') as file:
file.write(response.content)
# Example usage:
download_file('https://huggingface.co/openpecha/speecht5-tts-01/resolve/main/female_2.npy', 'female_2.npy')
def replace_numbers_with_convert(sentence, wylie=True):
pattern = r'\d+(\.\d+)?'
def replace(match):
return convert(match.group(), wylie)
result = re.sub(pattern, replace, sentence)
return result
def cleanup_text(inputs):
for src, dst in replacements:
inputs = inputs.replace(src, dst)
return inputs
speaker_embeddings = {
"Lhasa(female)": "female_2.npy",
}
replacements = [
('_', '_'),
('*', 'v'),
('`', ';'),
('~', ','),
('+', ','),
('\\', ';'),
('|', ';'),
('â•š',''),
('â•—','')
]
class EndpointHandler():
def __init__(self, path=""):
# load the model
self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
self.model.to('cuda')
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
def __call__(self, data: Dict[str, Any]) -> Dict[str, Union[int, str]]:
"""_summary_
Args:
data (Dict[str, Any]): _description_
Returns:
bytes: _description_
"""
text = data.pop("inputs",data)
# process input
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
text = converter.toWylie(text)
text=cleanup_text(text)
text=replace_numbers_with_convert(text)
inputs = self.processor(text=text, return_tensors="pt")
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :self.model.config.max_text_positions]
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
speaker_embedding = torch.tensor(speaker_embedding)
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=self.vocoder.to('cuda'))
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
if isinstance(speech, torch.Tensor):
speech = speech.numpy()
# Increase volume without distortion
target_dBFS = -20.0 # Adjust the value according to your requirement
speech = increase_volume_without_distortion(speech, 16000, target_dBFS)
# Create a unique temporary WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
temp_wav_path = temp_wav_file.name
sf.write(temp_wav_path, speech, 16000, 'PCM_24') # Use sf.write to write the WAV file
# Read the WAV file and encode it as base64
with open(temp_wav_path, "rb") as wav_file:
audio_base64 = base64.b64encode(wav_file.read()).decode("utf-8")
# Clean up the temporary WAV file
os.remove(temp_wav_path)
return {
"sample_rate": 16000,
"audio_base64": audio_base64, # Base64-encoded audio data
}