|
from typing import Dict, Any,Union |
|
import tempfile |
|
import numpy as np |
|
import torch |
|
import pyewts |
|
import noisereduce as nr |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from num2tib.core import convert |
|
from num2tib.core import convert2text |
|
import soundfile as sf |
|
import base64 |
|
import re |
|
import requests |
|
import os |
|
from pydub import AudioSegment |
|
|
|
converter = pyewts.pyewts() |
|
def download_file(url, destination): |
|
response = requests.get(url) |
|
with open(destination, 'wb') as file: |
|
file.write(response.content) |
|
|
|
|
|
download_file('https://huggingface.co/openpecha/speecht5-tts-01/resolve/main/female_2.npy', 'female_2.npy') |
|
def replace_numbers_with_convert(sentence, wylie=True): |
|
pattern = r'\d+(\.\d+)?' |
|
def replace(match): |
|
return convert(match.group(), wylie) |
|
result = re.sub(pattern, replace, sentence) |
|
|
|
return result |
|
|
|
def cleanup_text(inputs): |
|
for src, dst in replacements: |
|
inputs = inputs.replace(src, dst) |
|
return inputs |
|
|
|
speaker_embeddings = { |
|
"Lhasa(female)": "female_2.npy", |
|
|
|
} |
|
|
|
replacements = [ |
|
('_', '_'), |
|
('*', 'v'), |
|
('`', ';'), |
|
('~', ','), |
|
('+', ','), |
|
('\\', ';'), |
|
('|', ';'), |
|
('â•š',''), |
|
('â•—','') |
|
] |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b") |
|
self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b") |
|
self.model.to('cuda') |
|
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Union[int, str]]: |
|
"""_summary_ |
|
|
|
Args: |
|
data (Dict[str, Any]): _description_ |
|
|
|
Returns: |
|
bytes: _description_ |
|
""" |
|
text = data.pop("inputs",data) |
|
|
|
|
|
|
|
if len(text.strip()) == 0: |
|
return (16000, np.zeros(0).astype(np.int16)) |
|
text = converter.toWylie(text) |
|
text=cleanup_text(text) |
|
text=replace_numbers_with_convert(text) |
|
inputs = self.processor(text=text, return_tensors="pt") |
|
input_ids = inputs["input_ids"] |
|
input_ids = input_ids[..., :self.model.config.max_text_positions] |
|
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)']) |
|
speaker_embedding = torch.tensor(speaker_embedding) |
|
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=self.vocoder.to('cuda')) |
|
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file: |
|
temp_wav_path = temp_wav_file.name |
|
sf.write(temp_wav_path, speech, 16000, 'PCM_24') |
|
|
|
|
|
with open(temp_wav_path, "rb") as wav_file: |
|
audio_base64 = base64.b64encode(wav_file.read()).decode("utf-8") |
|
|
|
|
|
os.remove(temp_wav_path) |
|
|
|
return { |
|
"sample_rate": 16000, |
|
"audio_base64": audio_base64, |
|
"model": "openpecha/speecht5-tts-01", |
|
"model_version": "1" |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|