--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: classifier.skops widget: - structuredData: credibleSetConfidence: - 0.75 - 0.75 - 0.25 distanceFootprintMean: - 1.0 - 1.0 - 0.9948455095291138 distanceFootprintMeanNeighbourhood: - 1.0 - 1.0 - 1.0 distanceSentinelFootprint: - 1.0 - 1.0 - 0.9999213218688965 distanceSentinelFootprintNeighbourhood: - 1.0 - 1.0 - 1.0 distanceSentinelTss: - 0.9982281923294067 - 0.9999350309371948 - 0.9999213218688965 distanceSentinelTssNeighbourhood: - 1.0 - 1.0 - 1.0 distanceTssMean: - 0.9982281923294067 - 0.9999350309371948 - 0.9947366714477539 distanceTssMeanNeighbourhood: - 1.0 - 1.0 - 1.0 eQtlColocClppMaximum: - 0.949999988079071 - 0.0 - 0.06608512997627258 eQtlColocClppMaximumNeighbourhood: - 1.0 - 0.0 - 1.0 eQtlColocH4Maximum: - 1.0 - 0.0 - 0.0 eQtlColocH4MaximumNeighbourhood: - 1.0 - 0.0 - 0.0 geneCount500kb: - 20.0 - 15.0 - 8.0 geneId: - ENSG00000087237 - ENSG00000169174 - ENSG00000084674 goldStandardSet: - 1 - 1 - 1 pQtlColocClppMaximum: - 0.0 - 1.0 - 0.0 pQtlColocClppMaximumNeighbourhood: - 0.0 - 1.0 - 0.0 pQtlColocH4Maximum: - 0.0 - 1.0 - 0.0 pQtlColocH4MaximumNeighbourhood: - 0.0 - 1.0 - 0.0 proteinGeneCount500kb: - 8.0 - 7.0 - 3.0 sQtlColocClppMaximum: - 0.949999988079071 - 0.0 - 0.21970131993293762 sQtlColocClppMaximumNeighbourhood: - 1.0 - 0.0 - 1.0 sQtlColocH4Maximum: - 1.0 - 0.0 - 0.0 sQtlColocH4MaximumNeighbourhood: - 1.0 - 0.0 - 0.0 studyLocusId: - 005bc8624f8dd7f7c7bc63e651e9e59d - 02c442ea4fa5ab80586a6d1ff6afa843 - 235e8ce166619f33e27582fff5bc0c94 vepMaximum: - 0.33000001311302185 - 0.6600000262260437 - 0.6600000262260437 vepMaximumNeighbourhood: - 1.0 - 1.0 - 1.0 vepMean: - 0.33000001311302185 - 0.6600000262260437 - 0.0039977929554879665 vepMeanNeighbourhood: - 1.0 - 1.0 - 1.0 --- # Model description The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are: - Distance: (from credible set variants to gene) - Molecular QTL Colocalization - Variant Pathogenicity: (from VEP) More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/ ## Intended uses & limitations [More Information Needed] ## Training Procedure Gradient Boosting Classifier ### Hyperparameters
Click to expand | Hyperparameter | Value | |-------------------------|-----------------| | objective | binary:logistic | | base_score | | | booster | | | callbacks | | | colsample_bylevel | | | colsample_bynode | | | colsample_bytree | 0.8 | | device | | | early_stopping_rounds | | | enable_categorical | False | | eval_metric | aucpr | | feature_types | | | feature_weights | | | gamma | | | grow_policy | | | importance_type | | | interaction_constraints | | | learning_rate | | | max_bin | | | max_cat_threshold | | | max_cat_to_onehot | | | max_delta_step | | | max_depth | 5 | | max_leaves | | | min_child_weight | 10 | | missing | nan | | monotone_constraints | | | multi_strategy | | | n_estimators | | | n_jobs | | | num_parallel_tree | | | random_state | 777 | | reg_alpha | 1 | | reg_lambda | 1.0 | | sampling_method | | | scale_pos_weight | 0.8 | | subsample | 0.8 | | tree_method | | | validate_parameters | | | verbosity | | | eta | 0.05 |
# How to Get Started with the Model To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the `predict` method. More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/ # Citation https://doi.org/10.1038/s41588-021-00945-5 # License MIT