Upload folder using huggingface_hub
Browse files- config.json +90 -0
- model.safetensors +3 -0
- myna.py +340 -0
config.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"return_dict": true,
|
3 |
+
"output_hidden_states": false,
|
4 |
+
"output_attentions": false,
|
5 |
+
"torchscript": false,
|
6 |
+
"torch_dtype": "float32",
|
7 |
+
"use_bfloat16": false,
|
8 |
+
"tf_legacy_loss": false,
|
9 |
+
"pruned_heads": {},
|
10 |
+
"tie_word_embeddings": true,
|
11 |
+
"chunk_size_feed_forward": 0,
|
12 |
+
"is_encoder_decoder": false,
|
13 |
+
"is_decoder": false,
|
14 |
+
"cross_attention_hidden_size": null,
|
15 |
+
"add_cross_attention": false,
|
16 |
+
"tie_encoder_decoder": false,
|
17 |
+
"max_length": 20,
|
18 |
+
"min_length": 0,
|
19 |
+
"do_sample": false,
|
20 |
+
"early_stopping": false,
|
21 |
+
"num_beams": 1,
|
22 |
+
"num_beam_groups": 1,
|
23 |
+
"diversity_penalty": 0.0,
|
24 |
+
"temperature": 1.0,
|
25 |
+
"top_k": 50,
|
26 |
+
"top_p": 1.0,
|
27 |
+
"typical_p": 1.0,
|
28 |
+
"repetition_penalty": 1.0,
|
29 |
+
"length_penalty": 1.0,
|
30 |
+
"no_repeat_ngram_size": 0,
|
31 |
+
"encoder_no_repeat_ngram_size": 0,
|
32 |
+
"bad_words_ids": null,
|
33 |
+
"num_return_sequences": 1,
|
34 |
+
"output_scores": false,
|
35 |
+
"return_dict_in_generate": false,
|
36 |
+
"forced_bos_token_id": null,
|
37 |
+
"forced_eos_token_id": null,
|
38 |
+
"remove_invalid_values": false,
|
39 |
+
"exponential_decay_length_penalty": null,
|
40 |
+
"suppress_tokens": null,
|
41 |
+
"begin_suppress_tokens": null,
|
42 |
+
"architectures": [
|
43 |
+
"Myna"
|
44 |
+
],
|
45 |
+
"finetuning_task": null,
|
46 |
+
"id2label": {
|
47 |
+
"0": "LABEL_0",
|
48 |
+
"1": "LABEL_1"
|
49 |
+
},
|
50 |
+
"label2id": {
|
51 |
+
"LABEL_0": 0,
|
52 |
+
"LABEL_1": 1
|
53 |
+
},
|
54 |
+
"tokenizer_class": null,
|
55 |
+
"prefix": null,
|
56 |
+
"bos_token_id": null,
|
57 |
+
"pad_token_id": null,
|
58 |
+
"eos_token_id": null,
|
59 |
+
"sep_token_id": null,
|
60 |
+
"decoder_start_token_id": null,
|
61 |
+
"task_specific_params": null,
|
62 |
+
"problem_type": null,
|
63 |
+
"_name_or_path": "oriyonay/myna-85m",
|
64 |
+
"_attn_implementation_autoset": false,
|
65 |
+
"transformers_version": "4.48.0",
|
66 |
+
"spec_size": [
|
67 |
+
128,
|
68 |
+
4096
|
69 |
+
],
|
70 |
+
"patch_size": 16,
|
71 |
+
"dim": 768,
|
72 |
+
"depth": 12,
|
73 |
+
"heads": 12,
|
74 |
+
"mlp_dim": 3072,
|
75 |
+
"dim_head": 64,
|
76 |
+
"arch": "vit-b-16",
|
77 |
+
"additional_patch_size": [
|
78 |
+
128,
|
79 |
+
2
|
80 |
+
],
|
81 |
+
"hybrid_mode": true,
|
82 |
+
"n_samples": 50000,
|
83 |
+
"sr": 16000,
|
84 |
+
"n_frames": 96,
|
85 |
+
"model_type": "myna",
|
86 |
+
"auto_map": {
|
87 |
+
"AutoConfig": "myna.MynaConfig",
|
88 |
+
"AutoModel": "myna.Myna"
|
89 |
+
}
|
90 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd4b05fe43c9234e7637101ba007a2525cc14f504c5682192c7c4e1e866e4127
|
3 |
+
size 341685936
|
myna.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Modified from the vit_pytorch library: https://github.com/lucidrains/vit-pytorch
|
3 |
+
'''
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
import json
|
8 |
+
import math
|
9 |
+
from nnAudio.features.mel import MelSpectrogram
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
import torchaudio
|
14 |
+
import torchaudio.transforms as T
|
15 |
+
|
16 |
+
# for uploading to huggingface hub
|
17 |
+
from huggingface_hub import HfApi, PyTorchModelHubMixin
|
18 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
19 |
+
import shutil
|
20 |
+
|
21 |
+
|
22 |
+
def pair(t):
|
23 |
+
return t if isinstance(t, (tuple, list)) else (t, t)
|
24 |
+
|
25 |
+
|
26 |
+
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
|
27 |
+
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
|
28 |
+
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
|
29 |
+
omega = torch.arange(dim // 4) / (dim // 4 - 1)
|
30 |
+
omega = 1.0 / (temperature ** omega)
|
31 |
+
|
32 |
+
y = y.flatten()[:, None] * omega[None, :]
|
33 |
+
x = x.flatten()[:, None] * omega[None, :]
|
34 |
+
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
|
35 |
+
return pe.type(dtype)
|
36 |
+
|
37 |
+
|
38 |
+
def load_model(model: nn.Module, checkpoint_path: str, device: str = 'cpu', ignore_layers: list = ['linear_head'], verbose: bool = False):
|
39 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
40 |
+
|
41 |
+
filtered_state_dict = {
|
42 |
+
k: v for k, v in checkpoint.items()
|
43 |
+
if not any(k.startswith(layer) for layer in ignore_layers)
|
44 |
+
}
|
45 |
+
|
46 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
47 |
+
|
48 |
+
if ignore_layers and verbose:
|
49 |
+
print(f'==> Loaded model from {checkpoint_path}, ignoring layers: {", ".join(ignore_layers)}')
|
50 |
+
|
51 |
+
|
52 |
+
class FeedForward(nn.Module):
|
53 |
+
def __init__(self, dim, hidden_dim):
|
54 |
+
super().__init__()
|
55 |
+
self.net = nn.Sequential(
|
56 |
+
nn.LayerNorm(dim),
|
57 |
+
nn.Linear(dim, hidden_dim),
|
58 |
+
nn.GELU(),
|
59 |
+
nn.Linear(hidden_dim, dim),
|
60 |
+
)
|
61 |
+
def forward(self, x):
|
62 |
+
return self.net(x)
|
63 |
+
|
64 |
+
|
65 |
+
class Attention(nn.Module):
|
66 |
+
def __init__(self, dim, heads = 8, dim_head = 64):
|
67 |
+
super().__init__()
|
68 |
+
inner_dim = dim_head * heads
|
69 |
+
self.heads = heads
|
70 |
+
self.scale = dim_head ** -0.5
|
71 |
+
self.norm = nn.LayerNorm(dim)
|
72 |
+
|
73 |
+
self.attend = nn.Softmax(dim = -1)
|
74 |
+
|
75 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
76 |
+
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = self.norm(x)
|
80 |
+
|
81 |
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
82 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
83 |
+
|
84 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
85 |
+
|
86 |
+
attn = self.attend(dots)
|
87 |
+
|
88 |
+
out = torch.matmul(attn, v)
|
89 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
90 |
+
return self.to_out(out)
|
91 |
+
|
92 |
+
|
93 |
+
class Transformer(nn.Module):
|
94 |
+
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
|
95 |
+
super().__init__()
|
96 |
+
self.norm = nn.LayerNorm(dim)
|
97 |
+
self.layers = nn.ModuleList([])
|
98 |
+
for _ in range(depth):
|
99 |
+
self.layers.append(nn.ModuleList([
|
100 |
+
Attention(dim, heads = heads, dim_head = dim_head),
|
101 |
+
FeedForward(dim, mlp_dim)
|
102 |
+
]))
|
103 |
+
def forward(self, x):
|
104 |
+
for attn, ff in self.layers:
|
105 |
+
x = attn(x) + x
|
106 |
+
x = ff(x) + x
|
107 |
+
return self.norm(x)
|
108 |
+
|
109 |
+
|
110 |
+
class MynaPreprocessor:
|
111 |
+
def __init__(self, target_sr: int = 16000, n_mels: int = 128):
|
112 |
+
self.target_sr = target_sr
|
113 |
+
self.n_mels = n_mels
|
114 |
+
self.mel_spec = MelSpectrogram(sr=target_sr, n_mels=n_mels, verbose=False)
|
115 |
+
|
116 |
+
def __call__(self, filename: str, n_frames: int = None):
|
117 |
+
# loads audio from file and returns a 3D tensor (B, n_mels, n_frames)
|
118 |
+
signal, sr = torchaudio.load(filename)
|
119 |
+
if signal.shape[0] > 1:
|
120 |
+
signal = signal.mean(dim=0, keepdim=True)
|
121 |
+
if sr != self.target_sr:
|
122 |
+
resampler = T.Resample(orig_freq=sr, new_freq=self.target_sr)
|
123 |
+
signal = resampler(signal)
|
124 |
+
ms = self.mel_spec(signal)
|
125 |
+
|
126 |
+
if n_frames:
|
127 |
+
ms = self._batch_spectrogram(ms, n_frames)
|
128 |
+
|
129 |
+
return ms
|
130 |
+
|
131 |
+
def _batch_spectrogram(self, ms: torch.Tensor, n_frames: int):
|
132 |
+
# sanity check
|
133 |
+
assert ms.dim() == 3 and ms.shape[0] == 1
|
134 |
+
|
135 |
+
# discard excess frames
|
136 |
+
num_chunks = ms.shape[-1] // n_frames
|
137 |
+
ms = ms[:, :, :num_chunks * n_frames]
|
138 |
+
|
139 |
+
# split the tensor into chunks and stack them
|
140 |
+
chunks = torch.chunk(ms, num_chunks, dim=2)
|
141 |
+
batch = torch.stack(chunks)
|
142 |
+
|
143 |
+
return batch
|
144 |
+
|
145 |
+
|
146 |
+
class MynaConfig(PretrainedConfig):
|
147 |
+
model_type = 'myna'
|
148 |
+
def __init__(
|
149 |
+
self, spec_size=(128, 4096), patch_size=16, dim=384, depth=12,
|
150 |
+
heads=6, mlp_dim=1536, dim_head = 64, arch=None, additional_patch_size = None,
|
151 |
+
hybrid_mode: bool = False, n_samples = 50000, sr = 16000, **kwargs
|
152 |
+
):
|
153 |
+
super().__init__(**kwargs)
|
154 |
+
self.spec_size = spec_size
|
155 |
+
self.patch_size = patch_size
|
156 |
+
self.dim = dim
|
157 |
+
self.depth = depth
|
158 |
+
self.heads = heads
|
159 |
+
self.mlp_dim = mlp_dim
|
160 |
+
self.dim_head = dim_head
|
161 |
+
self.arch = arch
|
162 |
+
self.additional_patch_size = additional_patch_size
|
163 |
+
self.hybrid_mode = hybrid_mode
|
164 |
+
|
165 |
+
self.n_samples = n_samples # number of samples for inference
|
166 |
+
self.sr = sr # for preprocessing
|
167 |
+
self.n_frames = self._get_n_frames(n_samples)
|
168 |
+
|
169 |
+
# load architecture if provided
|
170 |
+
if arch:
|
171 |
+
arch = self._get_arch(arch)
|
172 |
+
self.dim = arch['dim']
|
173 |
+
self.depth = arch['depth']
|
174 |
+
self.heads = arch['heads']
|
175 |
+
self.mlp_dim = arch['mlp_dim']
|
176 |
+
|
177 |
+
def _get_arch(self, arch: str):
|
178 |
+
if arch.lower() in ['vit-s-16', 'vit-s-32']:
|
179 |
+
# dim 384, depth 12, MLP 1536, 6 heads, 22M parameters
|
180 |
+
return {'dim': 384, 'depth': 12, 'mlp_dim': 1536, 'heads': 6}
|
181 |
+
if arch.lower() == 'vit-b-16':
|
182 |
+
# dim 768, depth 12, MLP 3072, 12 heads, 87M parameters
|
183 |
+
return {'dim': 768, 'depth': 12, 'mlp_dim': 3072, 'heads': 12}
|
184 |
+
if arch.lower() == 'vit-l-16':
|
185 |
+
# dim 1024, depth 24, MLP 4096, 16 heads, 303M parameters
|
186 |
+
return {'dim': 1024, 'depth': 24, 'mlp_dim': 4096, 'heads': 16}
|
187 |
+
|
188 |
+
raise ValueError(f'Architecture {arch} not implemented')
|
189 |
+
|
190 |
+
def _get_n_frames(self, n_samples: int):
|
191 |
+
''' How many frames is n_samples samples? '''
|
192 |
+
mel_spectrogram = MelSpectrogram(sr=self.sr, n_mels=self.spec_size[0], verbose=False)
|
193 |
+
patch_size_time = self.patch_size if isinstance(self.patch_size, int) else self.patch_size[1]
|
194 |
+
mel_frames = mel_spectrogram(torch.randn(1, 1, n_samples)).shape[-1]
|
195 |
+
mel_frames = math.floor(mel_frames / patch_size_time) * patch_size_time
|
196 |
+
return mel_frames
|
197 |
+
|
198 |
+
|
199 |
+
class Myna(PreTrainedModel, PyTorchModelHubMixin):
|
200 |
+
config_class = MynaConfig
|
201 |
+
def __init__(self, config: MynaConfig):
|
202 |
+
super().__init__(config)
|
203 |
+
|
204 |
+
self.preprocessor = MynaPreprocessor()
|
205 |
+
self.hybrid_mode = config.hybrid_mode
|
206 |
+
spec_height, spec_width = pair(config.spec_size)
|
207 |
+
patch_height, patch_width = pair(config.patch_size)
|
208 |
+
|
209 |
+
assert spec_height % patch_height == 0 and spec_width % patch_width == 0, 'Spectrogram dimensions must be divisible by the patch size.'
|
210 |
+
|
211 |
+
self.additional_patch_size = config.additional_patch_size
|
212 |
+
if config.additional_patch_size:
|
213 |
+
patch_height_b, patch_width_b = pair(config.additional_patch_size)
|
214 |
+
patch_dim_b = patch_height_b * patch_width_b
|
215 |
+
|
216 |
+
self.to_patch_embedding_b, self.pos_embedding_b = self._make_embeddings(
|
217 |
+
patch_height_b, patch_width_b, patch_dim_b, config.dim, spec_height, spec_width
|
218 |
+
)
|
219 |
+
|
220 |
+
patch_dim = patch_height * patch_width
|
221 |
+
|
222 |
+
self.to_patch_embedding, self.pos_embedding = self._make_embeddings(
|
223 |
+
patch_height, patch_width, patch_dim, config.dim, spec_height, spec_width
|
224 |
+
)
|
225 |
+
|
226 |
+
self.transformer = Transformer(config.dim, config.depth, config.heads, config.dim_head, config.mlp_dim)
|
227 |
+
|
228 |
+
self.pool = 'mean'
|
229 |
+
self.to_latent = nn.Identity()
|
230 |
+
|
231 |
+
self.linear_head = nn.Identity()
|
232 |
+
|
233 |
+
def forward(self, spec, recurse=True):
|
234 |
+
if self.hybrid_mode and recurse:
|
235 |
+
a = self(spec, recurse=False)
|
236 |
+
self.toggle_embeddings()
|
237 |
+
b = self(spec, recurse=False)
|
238 |
+
self.toggle_embeddings()
|
239 |
+
return torch.cat((a, b), dim=-1)
|
240 |
+
|
241 |
+
# if input shape is not 4d, make it 4d:
|
242 |
+
if spec.dim() == 2:
|
243 |
+
# unbatched: n_mels, n_frames
|
244 |
+
spec = spec.unsqueeze(0).unsqueeze(0)
|
245 |
+
elif spec.dim() == 3:
|
246 |
+
# batched but without channels: B, n_mels, n_frames
|
247 |
+
spec = spec.unsqueeze(1)
|
248 |
+
assert spec.dim() == 4
|
249 |
+
|
250 |
+
device = spec.device
|
251 |
+
|
252 |
+
x = self.to_patch_embedding(spec)
|
253 |
+
n_patches = x.shape[1] # x is of shape (B, n_patches, dim)
|
254 |
+
x += self.pos_embedding[:n_patches].to(device, dtype=x.dtype)
|
255 |
+
|
256 |
+
x = self.transformer(x)
|
257 |
+
x = x.mean(dim = 1)
|
258 |
+
|
259 |
+
x = self.to_latent(x)
|
260 |
+
return self.linear_head(x)
|
261 |
+
|
262 |
+
def toggle_embeddings(self):
|
263 |
+
if not self.additional_patch_size:
|
264 |
+
print('toggle_embeddings() called but no additional patch size provided! Ignoring call.')
|
265 |
+
return
|
266 |
+
self.to_patch_embedding, self.to_patch_embedding_b = self.to_patch_embedding_b, self.to_patch_embedding
|
267 |
+
self.pos_embedding, self.pos_embedding_b = self.pos_embedding_b, self.pos_embedding
|
268 |
+
|
269 |
+
def _make_embeddings(self, patch_height, patch_width, patch_dim, dim, image_height, image_width):
|
270 |
+
to_patch_embedding = nn.Sequential(
|
271 |
+
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
272 |
+
nn.LayerNorm(patch_dim),
|
273 |
+
nn.Linear(patch_dim, dim),
|
274 |
+
nn.LayerNorm(dim),
|
275 |
+
)
|
276 |
+
|
277 |
+
pos_embedding = posemb_sincos_2d(
|
278 |
+
h = image_height // patch_height,
|
279 |
+
w = image_width // patch_width,
|
280 |
+
dim = dim,
|
281 |
+
)
|
282 |
+
|
283 |
+
return to_patch_embedding, pos_embedding
|
284 |
+
|
285 |
+
def from_file(self, filename: str, n_samples: int = None):
|
286 |
+
n_frames = self.config.n_frames
|
287 |
+
if n_samples and n_samples != self.config.n_samples:
|
288 |
+
n_frames = self.config._get_n_frames(n_samples)
|
289 |
+
spec = self.preprocessor(filename, n_frames).to(self.device)
|
290 |
+
return self(spec)
|
291 |
+
|
292 |
+
@property
|
293 |
+
def n_params(self):
|
294 |
+
return sum(p.numel() for p in self.parameters())
|
295 |
+
|
296 |
+
|
297 |
+
def save_model_and_push(model, repo_name, save_dir='myna-temp', to_hub=False):
|
298 |
+
model.save_pretrained(save_dir)
|
299 |
+
shutil.copy('myna.py', save_dir)
|
300 |
+
|
301 |
+
config = model.config.to_dict()
|
302 |
+
config.update({
|
303 |
+
'_name_or_path': repo_name,
|
304 |
+
'architectures': ['Myna'],
|
305 |
+
'auto_map': {
|
306 |
+
'AutoConfig': 'myna.MynaConfig',
|
307 |
+
'AutoModel': 'myna.Myna'
|
308 |
+
},
|
309 |
+
'model_type': 'myna'
|
310 |
+
})
|
311 |
+
|
312 |
+
with open(os.path.join(save_dir, 'config.json'), 'w') as f:
|
313 |
+
json.dump(config, f, indent=4)
|
314 |
+
|
315 |
+
print(f'Model saved locally to {save_dir}')
|
316 |
+
|
317 |
+
if to_hub:
|
318 |
+
api = HfApi()
|
319 |
+
api.create_repo(repo_name, exist_ok=True)
|
320 |
+
api.upload_folder(folder_path=save_dir, repo_id=repo_name)
|
321 |
+
print(f"Model pushed to: https://huggingface.co/{repo_name}")
|
322 |
+
|
323 |
+
|
324 |
+
if __name__ == '__main__':
|
325 |
+
config = MynaConfig(
|
326 |
+
arch='vit-b-16', # arch='vit-s-16',
|
327 |
+
patch_size=16,
|
328 |
+
additional_patch_size=(128, 2),
|
329 |
+
hybrid_mode=True
|
330 |
+
)
|
331 |
+
model = Myna(config)
|
332 |
+
load_model(model, 'checkpoints/myna-85m.pth', verbose=True)
|
333 |
+
print(f'Model contains {model.n_params:,} parameters')
|
334 |
+
|
335 |
+
save_model_and_push(
|
336 |
+
model,
|
337 |
+
repo_name='oriyonay/myna-85m',
|
338 |
+
save_dir='myna-85m-hybrid',
|
339 |
+
to_hub=True
|
340 |
+
)
|