|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.643 average_precision: 0.357 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.392 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.643 average_precision: 0.357 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.392 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.586 average_precision: 0.499 roc_auc: 0.618 recall_macro: 0.547 f1_macro: 0.494 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.586 average_precision: 0.499 roc_auc: 0.618 recall_macro: 0.547 f1_macro: 0.494 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.647 average_precision: 0.508 roc_auc: 0.626 recall_macro: 0.590 f1_macro: 0.585 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.647 average_precision: 0.508 roc_auc: 0.626 recall_macro: 0.590 f1_macro: 0.585 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.586 average_precision: 0.396 roc_auc: 0.562 recall_macro: 0.562 f1_macro: 0.542 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.566 average_precision: 0.382 roc_auc: 0.529 recall_macro: 0.531 f1_macro: 0.522 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.553 average_precision: 0.412 roc_auc: 0.552 recall_macro: 0.561 f1_macro: 0.536 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.615 average_precision: 0.509 roc_auc: 0.390 recall_macro: 0.589 f1_macro: 0.582 |
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.574 average_precision: 0.501 roc_auc: 0.397 recall_macro: 0.551 f1_macro: 0.544 |
|
|
|
Best model: |
|
Pipeline(steps=[('minmaxscaler', MinMaxScaler()), ('multinomialnb', MultinomialNB())]) |
|
Best Scores: |
|
accuracy: 0.647 average_precision: 0.508 roc_auc: 0.626 recall_macro: 0.590 f1_macro: 0.585 |
|
|