import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import tnkeeh as tn test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-arabic") model.to("cuda") #chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' chars_to_ignore_regex = '[\؛\—\_get\«\»\ـ\ـ\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\،\☭,\؟\'ۚ\چ\ڨ\ﺃ\ھ\ﻻ\'ۖ]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # For arabic diacritics cleander = tn.Tnkeeh(remove_diacritics=True) test_dataset = cleander.clean_hf_dataset(test_dataset, 'sentence') # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=32) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))