--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/timesformer-hr-finetuned-k600 tags: - generated_from_trainer metrics: - accuracy model-index: - name: timesformer-crime-detection results: [] --- # timesformer-crime-detection This model is a fine-tuned version of [facebook/timesformer-hr-finetuned-k600](https://huggingface.co/facebook/timesformer-hr-finetuned-k600) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0006 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 41 | 0.0006 | 1.0 | | No log | 2.0 | 82 | 0.0001 | 1.0 | | 0.2323 | 3.0 | 123 | 0.0001 | 1.0 | | 0.2323 | 4.0 | 164 | 0.0000 | 1.0 | | 0.0 | 5.0 | 205 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1