owl10 commited on
Commit
9b937cd
·
verified ·
1 Parent(s): 9f76dd6

Delete ReCogDrive_VLM

Browse files
ReCogDrive_VLM/added_tokens.json DELETED
@@ -1,41 +0,0 @@
1
- {
2
- "</box>": 151673,
3
- "</img>": 151666,
4
- "</loc>": 151675,
5
- "</quad>": 151669,
6
- "</ref>": 151671,
7
- "</tool_call>": 151658,
8
- "<BACK LEFT VIEW>": 151679,
9
- "<BACK RIGHT VIEW>": 151680,
10
- "<BACK VIEW>": 151681,
11
- "<FRONT LEFT VIEW>": 151677,
12
- "<FRONT RIGHT VIEW>": 151678,
13
- "<FRONT VIEW>": 151676,
14
- "<IMG_CONTEXT>": 151667,
15
- "<box>": 151672,
16
- "<img>": 151665,
17
- "<loc>": 151674,
18
- "<quad>": 151668,
19
- "<ref>": 151670,
20
- "<tool_call>": 151657,
21
- "<|box_end|>": 151649,
22
- "<|box_start|>": 151648,
23
- "<|endoftext|>": 151643,
24
- "<|file_sep|>": 151664,
25
- "<|fim_middle|>": 151660,
26
- "<|fim_pad|>": 151662,
27
- "<|fim_prefix|>": 151659,
28
- "<|fim_suffix|>": 151661,
29
- "<|im_end|>": 151645,
30
- "<|im_start|>": 151644,
31
- "<|image_pad|>": 151655,
32
- "<|object_ref_end|>": 151647,
33
- "<|object_ref_start|>": 151646,
34
- "<|quad_end|>": 151651,
35
- "<|quad_start|>": 151650,
36
- "<|repo_name|>": 151663,
37
- "<|video_pad|>": 151656,
38
- "<|vision_end|>": 151653,
39
- "<|vision_pad|>": 151654,
40
- "<|vision_start|>": 151652
41
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/all_results.json DELETED
@@ -1,8 +0,0 @@
1
- {
2
- "epoch": 3.0,
3
- "train_loss": 0.5695364278321172,
4
- "train_runtime": 108001.0924,
5
- "train_samples": 696801,
6
- "train_samples_per_second": 19.355,
7
- "train_steps_per_second": 0.019
8
- }
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/config.json DELETED
@@ -1,225 +0,0 @@
1
- {
2
- "_commit_hash": null,
3
- "_name_or_path": "/high_perf_store3/world-model/yongkangli/ckpt/InternVL3-8B",
4
- "architectures": [
5
- "InternVLChatModel"
6
- ],
7
- "auto_map": {
8
- "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
- "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
- "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
- },
12
- "downsample_ratio": 0.5,
13
- "dynamic_image_size": true,
14
- "force_image_size": 448,
15
- "hidden_size": 3584,
16
- "image_fold": null,
17
- "llm_config": {
18
- "_attn_implementation_autoset": true,
19
- "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
20
- "add_cross_attention": false,
21
- "architectures": [
22
- "Qwen2ForCausalLM"
23
- ],
24
- "attention_dropout": 0.0,
25
- "attn_implementation": "flash_attention_2",
26
- "bad_words_ids": null,
27
- "begin_suppress_tokens": null,
28
- "bos_token_id": 151643,
29
- "chunk_size_feed_forward": 0,
30
- "cross_attention_hidden_size": null,
31
- "decoder_start_token_id": null,
32
- "diversity_penalty": 0.0,
33
- "do_sample": false,
34
- "early_stopping": false,
35
- "encoder_no_repeat_ngram_size": 0,
36
- "eos_token_id": 151643,
37
- "exponential_decay_length_penalty": null,
38
- "finetuning_task": null,
39
- "forced_bos_token_id": null,
40
- "forced_eos_token_id": null,
41
- "hidden_act": "silu",
42
- "hidden_size": 3584,
43
- "id2label": {
44
- "0": "LABEL_0",
45
- "1": "LABEL_1"
46
- },
47
- "initializer_range": 0.02,
48
- "intermediate_size": 18944,
49
- "is_decoder": false,
50
- "is_encoder_decoder": false,
51
- "label2id": {
52
- "LABEL_0": 0,
53
- "LABEL_1": 1
54
- },
55
- "length_penalty": 1.0,
56
- "max_length": 20,
57
- "max_position_embeddings": 32768,
58
- "max_window_layers": 70,
59
- "min_length": 0,
60
- "model_type": "qwen2",
61
- "moe_config": null,
62
- "no_repeat_ngram_size": 0,
63
- "num_attention_heads": 28,
64
- "num_beam_groups": 1,
65
- "num_beams": 1,
66
- "num_hidden_layers": 28,
67
- "num_key_value_heads": 4,
68
- "num_return_sequences": 1,
69
- "output_attentions": false,
70
- "output_hidden_states": false,
71
- "output_scores": false,
72
- "pad_token_id": null,
73
- "prefix": null,
74
- "problem_type": null,
75
- "pruned_heads": {},
76
- "remove_invalid_values": false,
77
- "repetition_penalty": 1.0,
78
- "return_dict": true,
79
- "return_dict_in_generate": false,
80
- "rms_norm_eps": 1e-06,
81
- "rope_scaling": {
82
- "factor": 2.0,
83
- "rope_type": "dynamic",
84
- "type": "dynamic"
85
- },
86
- "rope_theta": 1000000.0,
87
- "sep_token_id": null,
88
- "sliding_window": null,
89
- "suppress_tokens": null,
90
- "task_specific_params": null,
91
- "temperature": 1.0,
92
- "tf_legacy_loss": false,
93
- "tie_encoder_decoder": false,
94
- "tie_word_embeddings": false,
95
- "tokenizer_class": null,
96
- "top_k": 50,
97
- "top_p": 1.0,
98
- "torch_dtype": "bfloat16",
99
- "torchscript": false,
100
- "transformers_version": "4.37.2",
101
- "typical_p": 1.0,
102
- "use_bfloat16": true,
103
- "use_cache": false,
104
- "use_sliding_window": false,
105
- "vocab_size": 151682
106
- },
107
- "max_dynamic_patch": 12,
108
- "min_dynamic_patch": 1,
109
- "model_type": "internvl_chat",
110
- "pad2square": false,
111
- "ps_version": "v2",
112
- "select_layer": -1,
113
- "system_message": null,
114
- "template": "internvl2_5",
115
- "tie_word_embeddings": false,
116
- "torch_dtype": "bfloat16",
117
- "transformers_version": null,
118
- "use_backbone_lora": 0,
119
- "use_llm_lora": 0,
120
- "use_thumbnail": true,
121
- "vision_config": {
122
- "_attn_implementation_autoset": true,
123
- "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
124
- "add_cross_attention": false,
125
- "architectures": [
126
- "InternVisionModel"
127
- ],
128
- "attention_dropout": 0.0,
129
- "auto_map": {
130
- "AutoConfig": "configuration_intern_vit.InternVisionConfig",
131
- "AutoModel": "modeling_intern_vit.InternVisionModel"
132
- },
133
- "bad_words_ids": null,
134
- "begin_suppress_tokens": null,
135
- "bos_token_id": null,
136
- "capacity_factor": 1.2,
137
- "chunk_size_feed_forward": 0,
138
- "cross_attention_hidden_size": null,
139
- "decoder_start_token_id": null,
140
- "diversity_penalty": 0.0,
141
- "do_sample": false,
142
- "drop_path_rate": 0.1,
143
- "dropout": 0.0,
144
- "early_stopping": false,
145
- "encoder_no_repeat_ngram_size": 0,
146
- "eos_token_id": null,
147
- "eval_capacity_factor": 1.4,
148
- "exponential_decay_length_penalty": null,
149
- "finetuning_task": null,
150
- "forced_bos_token_id": null,
151
- "forced_eos_token_id": null,
152
- "hidden_act": "gelu",
153
- "hidden_size": 1024,
154
- "id2label": {
155
- "0": "LABEL_0",
156
- "1": "LABEL_1"
157
- },
158
- "image_size": 448,
159
- "initializer_factor": 0.1,
160
- "initializer_range": 1e-10,
161
- "intermediate_size": 4096,
162
- "is_decoder": false,
163
- "is_encoder_decoder": false,
164
- "label2id": {
165
- "LABEL_0": 0,
166
- "LABEL_1": 1
167
- },
168
- "laux_allreduce": "all_nodes",
169
- "layer_norm_eps": 1e-06,
170
- "length_penalty": 1.0,
171
- "max_length": 20,
172
- "min_length": 0,
173
- "model_type": "intern_vit_6b",
174
- "moe_coeff_ratio": 0.5,
175
- "moe_intermediate_size": 768,
176
- "moe_output_scale": 4.0,
177
- "no_repeat_ngram_size": 0,
178
- "noisy_gate_policy": "RSample_before",
179
- "norm_type": "layer_norm",
180
- "num_attention_heads": 16,
181
- "num_beam_groups": 1,
182
- "num_beams": 1,
183
- "num_channels": 3,
184
- "num_experts": 8,
185
- "num_hidden_layers": 24,
186
- "num_return_sequences": 1,
187
- "num_routed_experts": 4,
188
- "num_shared_experts": 4,
189
- "output_attentions": false,
190
- "output_hidden_states": false,
191
- "output_scores": false,
192
- "pad_token_id": null,
193
- "patch_size": 14,
194
- "prefix": null,
195
- "problem_type": null,
196
- "pruned_heads": {},
197
- "qk_normalization": false,
198
- "qkv_bias": true,
199
- "remove_invalid_values": false,
200
- "repetition_penalty": 1.0,
201
- "return_dict": true,
202
- "return_dict_in_generate": false,
203
- "sep_token_id": null,
204
- "shared_expert_intermediate_size": 3072,
205
- "suppress_tokens": null,
206
- "task_specific_params": null,
207
- "temperature": 1.0,
208
- "tf_legacy_loss": false,
209
- "tie_encoder_decoder": false,
210
- "tie_word_embeddings": true,
211
- "tokenizer_class": null,
212
- "top_k": 50,
213
- "top_p": 1.0,
214
- "torch_dtype": "bfloat16",
215
- "torchscript": false,
216
- "transformers_version": "4.37.2",
217
- "typical_p": 1.0,
218
- "use_bfloat16": true,
219
- "use_flash_attn": true,
220
- "use_moe": false,
221
- "use_residual": true,
222
- "use_rts": false,
223
- "use_weighted_residual": false
224
- }
225
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/configuration_intern_vit.py DELETED
@@ -1,120 +0,0 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2024 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
-
7
- import os
8
- from typing import Union
9
-
10
- from transformers.configuration_utils import PretrainedConfig
11
- from transformers.utils import logging
12
-
13
- logger = logging.get_logger(__name__)
14
-
15
-
16
- class InternVisionConfig(PretrainedConfig):
17
- r"""
18
- This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
- instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
-
21
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
- documentation from [`PretrainedConfig`] for more information.
23
-
24
- Args:
25
- num_channels (`int`, *optional*, defaults to 3):
26
- Number of color channels in the input images (e.g., 3 for RGB).
27
- patch_size (`int`, *optional*, defaults to 14):
28
- The size (resolution) of each patch.
29
- image_size (`int`, *optional*, defaults to 224):
30
- The size (resolution) of each image.
31
- qkv_bias (`bool`, *optional*, defaults to `False`):
32
- Whether to add a bias to the queries and values in the self-attention layers.
33
- hidden_size (`int`, *optional*, defaults to 3200):
34
- Dimensionality of the encoder layers and the pooler layer.
35
- num_attention_heads (`int`, *optional*, defaults to 25):
36
- Number of attention heads for each attention layer in the Transformer encoder.
37
- intermediate_size (`int`, *optional*, defaults to 12800):
38
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
- qk_normalization (`bool`, *optional*, defaults to `True`):
40
- Whether to normalize the queries and keys in the self-attention layers.
41
- num_hidden_layers (`int`, *optional*, defaults to 48):
42
- Number of hidden layers in the Transformer encoder.
43
- use_flash_attn (`bool`, *optional*, defaults to `True`):
44
- Whether to use flash attention mechanism.
45
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
- `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
- layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
- The epsilon used by the layer normalization layers.
50
- dropout (`float`, *optional*, defaults to 0.0):
51
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
- drop_path_rate (`float`, *optional*, defaults to 0.0):
53
- Dropout rate for stochastic depth.
54
- attention_dropout (`float`, *optional*, defaults to 0.0):
55
- The dropout ratio for the attention probabilities.
56
- initializer_range (`float`, *optional*, defaults to 0.02):
57
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
- initializer_factor (`float`, *optional*, defaults to 0.1):
59
- A factor for layer scale.
60
- """
61
-
62
- model_type = 'intern_vit_6b'
63
-
64
- def __init__(
65
- self,
66
- num_channels=3,
67
- patch_size=14,
68
- image_size=224,
69
- qkv_bias=False,
70
- hidden_size=3200,
71
- num_attention_heads=25,
72
- intermediate_size=12800,
73
- qk_normalization=True,
74
- num_hidden_layers=48,
75
- use_flash_attn=True,
76
- hidden_act='gelu',
77
- norm_type='rms_norm',
78
- layer_norm_eps=1e-6,
79
- dropout=0.0,
80
- drop_path_rate=0.0,
81
- attention_dropout=0.0,
82
- initializer_range=0.02,
83
- initializer_factor=0.1,
84
- **kwargs,
85
- ):
86
- super().__init__(**kwargs)
87
-
88
- self.hidden_size = hidden_size
89
- self.intermediate_size = intermediate_size
90
- self.dropout = dropout
91
- self.drop_path_rate = drop_path_rate
92
- self.num_hidden_layers = num_hidden_layers
93
- self.num_attention_heads = num_attention_heads
94
- self.num_channels = num_channels
95
- self.patch_size = patch_size
96
- self.image_size = image_size
97
- self.initializer_range = initializer_range
98
- self.initializer_factor = initializer_factor
99
- self.attention_dropout = attention_dropout
100
- self.layer_norm_eps = layer_norm_eps
101
- self.hidden_act = hidden_act
102
- self.norm_type = norm_type
103
- self.qkv_bias = qkv_bias
104
- self.qk_normalization = qk_normalization
105
- self.use_flash_attn = use_flash_attn
106
-
107
- @classmethod
108
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
-
111
- if 'vision_config' in config_dict:
112
- config_dict = config_dict['vision_config']
113
-
114
- if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
- logger.warning(
116
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
- f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
- )
119
-
120
- return cls.from_dict(config_dict, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/configuration_internvl_chat.py DELETED
@@ -1,97 +0,0 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2024 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
-
7
- import copy
8
-
9
- from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
- from transformers.configuration_utils import PretrainedConfig
11
- from transformers.utils import logging
12
-
13
- from .configuration_intern_vit import InternVisionConfig
14
-
15
- logger = logging.get_logger(__name__)
16
-
17
-
18
- class InternVLChatConfig(PretrainedConfig):
19
- model_type = 'internvl_chat'
20
- is_composition = True
21
-
22
- def __init__(
23
- self,
24
- vision_config=None,
25
- llm_config=None,
26
- use_backbone_lora=0,
27
- use_llm_lora=0,
28
- select_layer=-1,
29
- force_image_size=None,
30
- downsample_ratio=0.5,
31
- template=None,
32
- dynamic_image_size=False,
33
- use_thumbnail=False,
34
- ps_version='v1',
35
- min_dynamic_patch=1,
36
- max_dynamic_patch=6,
37
- **kwargs):
38
- super().__init__(**kwargs)
39
-
40
- if vision_config is None:
41
- vision_config = {'architectures': ['InternVisionModel']}
42
- logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
-
44
- if llm_config is None:
45
- llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
- logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
-
48
- self.vision_config = InternVisionConfig(**vision_config)
49
- if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
- self.llm_config = LlamaConfig(**llm_config)
51
- elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
- self.llm_config = Qwen2Config(**llm_config)
53
- else:
54
- raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
- self.use_backbone_lora = use_backbone_lora
56
- self.use_llm_lora = use_llm_lora
57
- self.select_layer = select_layer
58
- self.force_image_size = force_image_size
59
- self.downsample_ratio = downsample_ratio
60
- self.template = template
61
- self.dynamic_image_size = dynamic_image_size
62
- self.use_thumbnail = use_thumbnail
63
- self.ps_version = ps_version # pixel shuffle version
64
- self.min_dynamic_patch = min_dynamic_patch
65
- self.max_dynamic_patch = max_dynamic_patch
66
- # By default, we use tie_word_embeddings=False for models of all sizes.
67
- self.tie_word_embeddings = self.llm_config.tie_word_embeddings
68
-
69
- logger.info(f'vision_select_layer: {self.select_layer}')
70
- logger.info(f'ps_version: {self.ps_version}')
71
- logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
- logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
-
74
- def to_dict(self):
75
- """
76
- Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
-
78
- Returns:
79
- `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
- """
81
- output = copy.deepcopy(self.__dict__)
82
- output['vision_config'] = self.vision_config.to_dict()
83
- output['llm_config'] = self.llm_config.to_dict()
84
- output['model_type'] = self.__class__.model_type
85
- output['use_backbone_lora'] = self.use_backbone_lora
86
- output['use_llm_lora'] = self.use_llm_lora
87
- output['select_layer'] = self.select_layer
88
- output['force_image_size'] = self.force_image_size
89
- output['downsample_ratio'] = self.downsample_ratio
90
- output['template'] = self.template
91
- output['dynamic_image_size'] = self.dynamic_image_size
92
- output['use_thumbnail'] = self.use_thumbnail
93
- output['ps_version'] = self.ps_version
94
- output['min_dynamic_patch'] = self.min_dynamic_patch
95
- output['max_dynamic_patch'] = self.max_dynamic_patch
96
-
97
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/conversation.py DELETED
@@ -1,391 +0,0 @@
1
- """
2
- Conversation prompt templates.
3
-
4
- We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
- If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
-
7
- Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
- """
9
-
10
- import dataclasses
11
- from enum import IntEnum, auto
12
- from typing import Dict, List, Tuple, Union
13
-
14
-
15
- class SeparatorStyle(IntEnum):
16
- """Separator styles."""
17
-
18
- ADD_COLON_SINGLE = auto()
19
- ADD_COLON_TWO = auto()
20
- ADD_COLON_SPACE_SINGLE = auto()
21
- NO_COLON_SINGLE = auto()
22
- NO_COLON_TWO = auto()
23
- ADD_NEW_LINE_SINGLE = auto()
24
- LLAMA2 = auto()
25
- CHATGLM = auto()
26
- CHATML = auto()
27
- CHATINTERN = auto()
28
- DOLLY = auto()
29
- RWKV = auto()
30
- PHOENIX = auto()
31
- ROBIN = auto()
32
- FALCON_CHAT = auto()
33
- CHATGLM3 = auto()
34
- INTERNVL_ZH = auto()
35
- MPT = auto()
36
-
37
-
38
- @dataclasses.dataclass
39
- class Conversation:
40
- """A class that manages prompt templates and keeps all conversation history."""
41
-
42
- # The name of this template
43
- name: str
44
- # The template of the system prompt
45
- system_template: str = '{system_message}'
46
- # The system message
47
- system_message: str = ''
48
- # The names of two roles
49
- roles: Tuple[str] = ('USER', 'ASSISTANT')
50
- # All messages. Each item is (role, message).
51
- messages: List[List[str]] = ()
52
- # The number of few shot examples
53
- offset: int = 0
54
- # The separator style and configurations
55
- sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
- sep: str = '\n'
57
- sep2: str = None
58
- # Stop criteria (the default one is EOS token)
59
- stop_str: Union[str, List[str]] = None
60
- # Stops generation if meeting any token in this list
61
- stop_token_ids: List[int] = None
62
-
63
- def get_prompt(self) -> str:
64
- """Get the prompt for generation."""
65
- system_prompt = self.system_template.format(system_message=self.system_message)
66
- if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
- ret = system_prompt + self.sep
68
- for role, message in self.messages:
69
- if message:
70
- ret += role + ': ' + message + self.sep
71
- else:
72
- ret += role + ':'
73
- return ret
74
- elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
- seps = [self.sep, self.sep2]
76
- ret = system_prompt + seps[0]
77
- for i, (role, message) in enumerate(self.messages):
78
- if message:
79
- ret += role + ': ' + message + seps[i % 2]
80
- else:
81
- ret += role + ':'
82
- return ret
83
- elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
- ret = system_prompt + self.sep
85
- for role, message in self.messages:
86
- if message:
87
- ret += role + ': ' + message + self.sep
88
- else:
89
- ret += role + ': ' # must be end with a space
90
- return ret
91
- elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
- ret = '' if system_prompt == '' else system_prompt + self.sep
93
- for role, message in self.messages:
94
- if message:
95
- ret += role + '\n' + message + self.sep
96
- else:
97
- ret += role + '\n'
98
- return ret
99
- elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
- ret = system_prompt
101
- for role, message in self.messages:
102
- if message:
103
- ret += role + message + self.sep
104
- else:
105
- ret += role
106
- return ret
107
- elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
- seps = [self.sep, self.sep2]
109
- ret = system_prompt
110
- for i, (role, message) in enumerate(self.messages):
111
- if message:
112
- ret += role + message + seps[i % 2]
113
- else:
114
- ret += role
115
- return ret
116
- elif self.sep_style == SeparatorStyle.RWKV:
117
- ret = system_prompt
118
- for i, (role, message) in enumerate(self.messages):
119
- if message:
120
- ret += (
121
- role
122
- + ': '
123
- + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
- )
125
- ret += '\n\n'
126
- else:
127
- ret += role + ':'
128
- return ret
129
- elif self.sep_style == SeparatorStyle.LLAMA2:
130
- seps = [self.sep, self.sep2]
131
- if self.system_message:
132
- ret = system_prompt
133
- else:
134
- ret = '[INST] '
135
- for i, (role, message) in enumerate(self.messages):
136
- tag = self.roles[i % 2]
137
- if message:
138
- if i == 0:
139
- ret += message + ' '
140
- else:
141
- ret += tag + ' ' + message + seps[i % 2]
142
- else:
143
- ret += tag
144
- return ret
145
- elif self.sep_style == SeparatorStyle.CHATGLM:
146
- # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
- # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
- round_add_n = 1 if self.name == 'chatglm2' else 0
149
- if system_prompt:
150
- ret = system_prompt + self.sep
151
- else:
152
- ret = ''
153
-
154
- for i, (role, message) in enumerate(self.messages):
155
- if i % 2 == 0:
156
- ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
-
158
- if message:
159
- ret += f'{role}:{message}{self.sep}'
160
- else:
161
- ret += f'{role}:'
162
- return ret
163
- elif self.sep_style == SeparatorStyle.CHATML:
164
- ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
- for role, message in self.messages:
166
- if message:
167
- ret += role + '\n' + message + self.sep + '\n'
168
- else:
169
- ret += role + '\n'
170
- return ret
171
- elif self.sep_style == SeparatorStyle.CHATGLM3:
172
- ret = ''
173
- if self.system_message:
174
- ret += system_prompt
175
- for role, message in self.messages:
176
- if message:
177
- ret += role + '\n' + ' ' + message
178
- else:
179
- ret += role
180
- return ret
181
- elif self.sep_style == SeparatorStyle.CHATINTERN:
182
- # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
- seps = [self.sep, self.sep2]
184
- ret = system_prompt
185
- for i, (role, message) in enumerate(self.messages):
186
- # if i % 2 == 0:
187
- # ret += "<s>"
188
- if message:
189
- ret += role + ':' + message + seps[i % 2] + '\n'
190
- else:
191
- ret += role + ':'
192
- return ret
193
- elif self.sep_style == SeparatorStyle.DOLLY:
194
- seps = [self.sep, self.sep2]
195
- ret = system_prompt
196
- for i, (role, message) in enumerate(self.messages):
197
- if message:
198
- ret += role + ':\n' + message + seps[i % 2]
199
- if i % 2 == 1:
200
- ret += '\n\n'
201
- else:
202
- ret += role + ':\n'
203
- return ret
204
- elif self.sep_style == SeparatorStyle.PHOENIX:
205
- ret = system_prompt
206
- for role, message in self.messages:
207
- if message:
208
- ret += role + ': ' + '<s>' + message + '</s>'
209
- else:
210
- ret += role + ': ' + '<s>'
211
- return ret
212
- elif self.sep_style == SeparatorStyle.ROBIN:
213
- ret = system_prompt + self.sep
214
- for role, message in self.messages:
215
- if message:
216
- ret += role + ':\n' + message + self.sep
217
- else:
218
- ret += role + ':\n'
219
- return ret
220
- elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
- ret = ''
222
- if self.system_message:
223
- ret += system_prompt + self.sep
224
- for role, message in self.messages:
225
- if message:
226
- ret += role + ': ' + message + self.sep
227
- else:
228
- ret += role + ':'
229
-
230
- return ret
231
- elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
- seps = [self.sep, self.sep2]
233
- ret = self.system_message + seps[0]
234
- for i, (role, message) in enumerate(self.messages):
235
- if message:
236
- ret += role + ': ' + message + seps[i % 2]
237
- else:
238
- ret += role + ':'
239
- return ret
240
- elif self.sep_style == SeparatorStyle.MPT:
241
- ret = system_prompt + self.sep
242
- for role, message in self.messages:
243
- if message:
244
- if type(message) is tuple:
245
- message, _, _ = message
246
- ret += role + message + self.sep
247
- else:
248
- ret += role
249
- return ret
250
- else:
251
- raise ValueError(f'Invalid style: {self.sep_style}')
252
-
253
- def set_system_message(self, system_message: str):
254
- """Set the system message."""
255
- self.system_message = system_message
256
-
257
- def append_message(self, role: str, message: str):
258
- """Append a new message."""
259
- self.messages.append([role, message])
260
-
261
- def update_last_message(self, message: str):
262
- """Update the last output.
263
-
264
- The last message is typically set to be None when constructing the prompt,
265
- so we need to update it in-place after getting the response from a model.
266
- """
267
- self.messages[-1][1] = message
268
-
269
- def to_gradio_chatbot(self):
270
- """Convert the conversation to gradio chatbot format."""
271
- ret = []
272
- for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
- if i % 2 == 0:
274
- ret.append([msg, None])
275
- else:
276
- ret[-1][-1] = msg
277
- return ret
278
-
279
- def to_openai_api_messages(self):
280
- """Convert the conversation to OpenAI chat completion format."""
281
- ret = [{'role': 'system', 'content': self.system_message}]
282
-
283
- for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
- if i % 2 == 0:
285
- ret.append({'role': 'user', 'content': msg})
286
- else:
287
- if msg is not None:
288
- ret.append({'role': 'assistant', 'content': msg})
289
- return ret
290
-
291
- def copy(self):
292
- return Conversation(
293
- name=self.name,
294
- system_template=self.system_template,
295
- system_message=self.system_message,
296
- roles=self.roles,
297
- messages=[[x, y] for x, y in self.messages],
298
- offset=self.offset,
299
- sep_style=self.sep_style,
300
- sep=self.sep,
301
- sep2=self.sep2,
302
- stop_str=self.stop_str,
303
- stop_token_ids=self.stop_token_ids,
304
- )
305
-
306
- def dict(self):
307
- return {
308
- 'template_name': self.name,
309
- 'system_message': self.system_message,
310
- 'roles': self.roles,
311
- 'messages': self.messages,
312
- 'offset': self.offset,
313
- }
314
-
315
-
316
- # A global registry for all conversation templates
317
- conv_templates: Dict[str, Conversation] = {}
318
-
319
-
320
- def register_conv_template(template: Conversation, override: bool = False):
321
- """Register a new conversation template."""
322
- if not override:
323
- assert (
324
- template.name not in conv_templates
325
- ), f'{template.name} has been registered.'
326
-
327
- conv_templates[template.name] = template
328
-
329
-
330
- def get_conv_template(name: str) -> Conversation:
331
- """Get a conversation template."""
332
- return conv_templates[name].copy()
333
-
334
-
335
- # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
- # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
- # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
- # Therefore, they are completely equivalent during inference.
339
- register_conv_template(
340
- Conversation(
341
- name='Hermes-2',
342
- system_template='<|im_start|>system\n{system_message}',
343
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
- system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
- roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
- sep_style=SeparatorStyle.MPT,
348
- sep='<|im_end|>',
349
- stop_str='<|endoftext|>',
350
- )
351
- )
352
-
353
-
354
- register_conv_template(
355
- Conversation(
356
- name='internlm2-chat',
357
- system_template='<|im_start|>system\n{system_message}',
358
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
- system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
- roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
- sep_style=SeparatorStyle.MPT,
363
- sep='<|im_end|>',
364
- )
365
- )
366
-
367
-
368
- register_conv_template(
369
- Conversation(
370
- name='phi3-chat',
371
- system_template='<|system|>\n{system_message}',
372
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
- system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
- roles=('<|user|>\n', '<|assistant|>\n'),
376
- sep_style=SeparatorStyle.MPT,
377
- sep='<|end|>',
378
- )
379
- )
380
-
381
-
382
- register_conv_template(
383
- Conversation(
384
- name='internvl2_5',
385
- system_template='<|im_start|>system\n{system_message}',
386
- system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
- roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
- sep_style=SeparatorStyle.MPT,
389
- sep='<|im_end|>\n',
390
- )
391
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/generation_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "transformers_version": "4.37.2"
4
- }
 
 
 
 
 
ReCogDrive_VLM/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
ReCogDrive_VLM/model-00001-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c982c6c84111bbccb0c1ae4bed52eeddb016a58baa8fb75883d073785c6fd097
3
- size 4991181304
 
 
 
 
ReCogDrive_VLM/model-00002-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b4e13e80e0f00742e69a368b08bec765f0b97849a599bb93d154666960cdcb30
3
- size 4958443072
 
 
 
 
ReCogDrive_VLM/model-00003-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ceaf53a1cfdc2005528e0e5d240905be7e54446920ab2894ac6a7ee36287b8
3
- size 4796984024
 
 
 
 
ReCogDrive_VLM/model-00004-of-00004.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f3055f04065ba7dba74beca77dc86eec4fd347ee8db3b4fb761676408a9488b
3
- size 1142338208
 
 
 
 
ReCogDrive_VLM/model.safetensors.index.json DELETED
@@ -1,692 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 15888862208
4
- },
5
- "weight_map": {
6
- "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
- "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
- "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
- "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
- "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
- "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
- "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
- "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
- "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
- "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
- "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
- "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
- "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
- "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
- "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
- "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
- "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
- "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
- "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
- "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
- "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
- "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
- "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
- "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
- "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
- "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
- "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
- "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
- "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
- "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
- "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
- "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
- "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
- "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
- "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
- "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
- "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
- "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
- "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
- "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
- "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
- "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
- "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
- "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
- "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
- "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
- "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
- "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
- "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
- "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
- "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
- "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
- "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
- "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
- "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
- "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
- "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
- "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
- "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
- "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
- "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
- "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
- "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
- "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
- "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
- "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
- "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
- "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
- "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
- "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
- "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
- "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
- "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
- "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
- "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
- "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
- "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
- "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
- "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
- "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
- "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
- "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
- "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
- "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
- "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
- "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
- "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
- "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
- "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
- "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
- "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
- "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
- "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
- "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
- "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
- "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
- "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
- "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
- "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
- "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
- "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
- "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
- "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
- "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
- "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
- "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
- "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
- "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
- "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
- "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
- "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
- "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
- "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
- "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
- "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
- "language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
- "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
- "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
- "language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
- "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
- "language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
- "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
- "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
- "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
- "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
- "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
- "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
- "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
- "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
- "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
- "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
- "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
- "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
- "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
- "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
- "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
- "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
- "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
- "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
- "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
- "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
- "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
- "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
- "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
- "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
- "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
- "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
- "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
- "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
- "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
- "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
- "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
- "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
- "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
- "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
- "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
- "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
- "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
- "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
- "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
- "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
- "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
- "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
- "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
- "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
- "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
- "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
- "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
- "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
- "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
- "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
- "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
- "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
- "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
- "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
- "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
- "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
- "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
- "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
- "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
- "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
- "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
- "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
- "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
- "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
- "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
- "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
- "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
- "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
- "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
- "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
- "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
- "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
- "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
- "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
- "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
- "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
- "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
- "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
- "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
- "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
- "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
- "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
- "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
- "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
- "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
- "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
- "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
- "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
- "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
- "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
- "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
- "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
- "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
- "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
- "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
- "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
- "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
- "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
- "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
- "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
- "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
- "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
- "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
- "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
- "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
- "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
- "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
- "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
- "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
- "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
- "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
- "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
- "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
- "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
- "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
- "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
- "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
- "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
- "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
- "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
- "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
- "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
- "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
- "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
- "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
- "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
- "language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
- "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
- "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
- "language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
- "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
- "language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
- "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
- "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
- "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
- "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
- "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
- "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
- "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
- "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
- "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
- "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
- "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
- "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
- "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
- "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
- "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
- "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
- "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
- "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
- "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
- "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
- "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
- "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
- "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
- "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
- "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
- "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
- "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
- "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
- "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
- "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
- "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
- "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
- "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
- "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
- "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
- "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
- "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
- "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
- "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
- "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
- "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
- "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
- "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
- "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
- "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
- "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
- "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
- "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
- "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
- "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
- "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
- "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
- "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
- "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
- "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
- "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
- "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
- "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
- "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
- "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
- "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
- "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
- "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
- "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
- "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
- "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
- "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
- "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
- "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
- "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
- "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
- "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
- "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
- "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
- "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
- "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
- "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
- "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
- "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
- "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
- "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
- "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
- "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
- "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
- "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
- "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
345
- "mlp1.0.bias": "model-00004-of-00004.safetensors",
346
- "mlp1.0.weight": "model-00004-of-00004.safetensors",
347
- "mlp1.1.bias": "model-00004-of-00004.safetensors",
348
- "mlp1.1.weight": "model-00004-of-00004.safetensors",
349
- "mlp1.3.bias": "model-00004-of-00004.safetensors",
350
- "mlp1.3.weight": "model-00004-of-00004.safetensors",
351
- "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
352
- "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
353
- "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
354
- "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
355
- "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
356
- "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
357
- "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
358
- "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
359
- "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
360
- "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
361
- "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
- "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
- "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
- "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
- "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
366
- "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
367
- "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
368
- "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
369
- "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
370
- "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
371
- "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
- "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
- "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
374
- "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
375
- "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
376
- "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
377
- "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
378
- "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
379
- "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
380
- "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
381
- "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
382
- "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
383
- "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
384
- "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
385
- "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
386
- "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
387
- "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
388
- "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
389
- "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
- "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
- "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
- "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
- "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
394
- "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
395
- "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
396
- "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
397
- "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
398
- "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
399
- "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
400
- "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
401
- "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
402
- "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
403
- "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
404
- "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
405
- "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
406
- "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
407
- "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
408
- "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
409
- "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
410
- "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
411
- "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
412
- "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
413
- "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
414
- "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
415
- "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
416
- "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
417
- "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
418
- "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
419
- "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
420
- "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
421
- "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
422
- "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
423
- "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
424
- "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
425
- "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
426
- "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
427
- "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
428
- "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
429
- "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
430
- "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
431
- "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
432
- "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
433
- "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
434
- "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
435
- "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
436
- "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
437
- "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
438
- "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
439
- "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
440
- "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
441
- "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
442
- "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
443
- "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
444
- "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
445
- "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
- "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
- "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
- "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
- "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
450
- "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
451
- "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
452
- "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
453
- "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
454
- "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
455
- "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
- "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
- "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
458
- "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
459
- "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
460
- "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
461
- "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
462
- "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
463
- "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
464
- "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
465
- "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
466
- "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
467
- "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
468
- "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
469
- "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
470
- "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
471
- "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
472
- "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
473
- "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
- "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
- "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
- "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
- "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
478
- "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
479
- "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
480
- "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
481
- "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
482
- "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
483
- "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
484
- "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
485
- "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
486
- "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
487
- "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
488
- "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
489
- "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
490
- "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
491
- "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
492
- "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
493
- "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
494
- "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
495
- "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
496
- "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
497
- "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
498
- "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
499
- "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
500
- "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
501
- "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
502
- "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
503
- "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
504
- "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
505
- "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
506
- "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
507
- "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
508
- "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
509
- "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
510
- "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
511
- "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
512
- "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
513
- "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
514
- "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
515
- "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
516
- "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
517
- "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
518
- "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
519
- "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
520
- "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
521
- "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
522
- "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
523
- "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
524
- "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
525
- "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
526
- "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
527
- "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
528
- "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
529
- "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
- "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
- "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
- "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
- "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
534
- "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
535
- "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
536
- "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
537
- "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
538
- "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
539
- "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
- "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
- "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
542
- "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
543
- "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
544
- "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
545
- "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
546
- "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
547
- "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
548
- "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
549
- "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
550
- "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
551
- "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
552
- "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
553
- "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
554
- "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
555
- "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
556
- "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
557
- "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
558
- "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
559
- "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
560
- "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
561
- "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
562
- "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
563
- "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
564
- "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
565
- "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
566
- "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
567
- "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
568
- "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
569
- "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
570
- "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
571
- "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
572
- "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
573
- "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
574
- "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
575
- "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
576
- "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
577
- "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
578
- "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
579
- "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
580
- "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
581
- "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
582
- "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
583
- "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
584
- "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
585
- "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
586
- "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
587
- "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
588
- "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
589
- "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
590
- "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
591
- "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
592
- "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
593
- "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
594
- "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
595
- "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
596
- "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
597
- "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
598
- "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
599
- "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
600
- "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
601
- "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
602
- "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
603
- "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
604
- "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
605
- "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
606
- "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
607
- "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
608
- "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
609
- "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
610
- "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
611
- "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
612
- "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
613
- "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
- "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
- "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
- "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
- "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
618
- "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
619
- "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
620
- "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
621
- "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
622
- "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
623
- "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
- "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
- "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
626
- "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
627
- "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
628
- "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
629
- "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
630
- "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
631
- "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
632
- "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
633
- "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
634
- "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
635
- "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
636
- "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
637
- "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
638
- "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
639
- "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
640
- "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
641
- "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
642
- "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
643
- "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
644
- "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
645
- "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
646
- "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
647
- "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
648
- "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
649
- "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
650
- "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
651
- "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
652
- "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
653
- "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
654
- "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
655
- "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
656
- "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
657
- "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
658
- "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
659
- "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
660
- "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
661
- "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
662
- "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
663
- "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
664
- "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
665
- "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
666
- "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
667
- "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
668
- "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
669
- "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
670
- "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
671
- "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
672
- "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
673
- "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
674
- "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
675
- "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
676
- "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
677
- "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
678
- "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
679
- "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
680
- "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
681
- "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
682
- "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
683
- "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
684
- "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
685
- "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
686
- "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
687
- "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
688
- "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
689
- "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
690
- "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
691
- }
692
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/modeling_intern_vit.py DELETED
@@ -1,431 +0,0 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2024 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
-
7
- from typing import Optional, Tuple, Union
8
-
9
- import torch
10
- import torch.nn.functional as F
11
- import torch.utils.checkpoint
12
- from einops import rearrange
13
- from timm.models.layers import DropPath
14
- from torch import nn
15
- from transformers.activations import ACT2FN
16
- from transformers.modeling_outputs import (BaseModelOutput,
17
- BaseModelOutputWithPooling)
18
- from transformers.modeling_utils import PreTrainedModel
19
- from transformers.utils import logging
20
-
21
- from .configuration_intern_vit import InternVisionConfig
22
-
23
- try:
24
- from flash_attn.bert_padding import pad_input, unpad_input
25
- from flash_attn.flash_attn_interface import \
26
- flash_attn_varlen_qkvpacked_func
27
- has_flash_attn = True
28
- except:
29
- print('FlashAttention2 is not installed.')
30
- has_flash_attn = False
31
-
32
- logger = logging.get_logger(__name__)
33
-
34
-
35
- class FlashAttention(nn.Module):
36
- """Implement the scaled dot product attention with softmax.
37
- Arguments
38
- ---------
39
- softmax_scale: The temperature to use for the softmax attention.
40
- (default: 1/sqrt(d_keys) where d_keys is computed at
41
- runtime)
42
- attention_dropout: The dropout rate to apply to the attention
43
- (default: 0.0)
44
- """
45
-
46
- def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
- super().__init__()
48
- self.softmax_scale = softmax_scale
49
- self.dropout_p = attention_dropout
50
-
51
- def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
- max_s=None, need_weights=False):
53
- """Implements the multihead softmax attention.
54
- Arguments
55
- ---------
56
- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
- if unpadded: (nnz, 3, h, d)
58
- key_padding_mask: a bool tensor of shape (B, S)
59
- """
60
- assert not need_weights
61
- assert qkv.dtype in [torch.float16, torch.bfloat16]
62
- assert qkv.is_cuda
63
-
64
- if cu_seqlens is None:
65
- batch_size = qkv.shape[0]
66
- seqlen = qkv.shape[1]
67
- if key_padding_mask is None:
68
- qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
- max_s = seqlen
70
- cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
- device=qkv.device)
72
- output = flash_attn_varlen_qkvpacked_func(
73
- qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
- softmax_scale=self.softmax_scale, causal=causal
75
- )
76
- output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
- else:
78
- nheads = qkv.shape[-2]
79
- x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
- x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
- x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
- output_unpad = flash_attn_varlen_qkvpacked_func(
83
- x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
- softmax_scale=self.softmax_scale, causal=causal
85
- )
86
- output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
- indices, batch_size, seqlen),
88
- 'b s (h d) -> b s h d', h=nheads)
89
- else:
90
- assert max_s is not None
91
- output = flash_attn_varlen_qkvpacked_func(
92
- qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
- softmax_scale=self.softmax_scale, causal=causal
94
- )
95
-
96
- return output, None
97
-
98
-
99
- class InternRMSNorm(nn.Module):
100
- def __init__(self, hidden_size, eps=1e-6):
101
- super().__init__()
102
- self.weight = nn.Parameter(torch.ones(hidden_size))
103
- self.variance_epsilon = eps
104
-
105
- def forward(self, hidden_states):
106
- input_dtype = hidden_states.dtype
107
- hidden_states = hidden_states.to(torch.float32)
108
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
- return self.weight * hidden_states.to(input_dtype)
111
-
112
-
113
- try:
114
- from apex.normalization import FusedRMSNorm
115
-
116
- InternRMSNorm = FusedRMSNorm # noqa
117
-
118
- logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
- except ImportError:
120
- # using the normal InternRMSNorm
121
- pass
122
- except Exception:
123
- logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
- pass
125
-
126
-
127
- NORM2FN = {
128
- 'rms_norm': InternRMSNorm,
129
- 'layer_norm': nn.LayerNorm,
130
- }
131
-
132
-
133
- class InternVisionEmbeddings(nn.Module):
134
- def __init__(self, config: InternVisionConfig):
135
- super().__init__()
136
- self.config = config
137
- self.embed_dim = config.hidden_size
138
- self.image_size = config.image_size
139
- self.patch_size = config.patch_size
140
-
141
- self.class_embedding = nn.Parameter(
142
- torch.randn(1, 1, self.embed_dim),
143
- )
144
-
145
- self.patch_embedding = nn.Conv2d(
146
- in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
- )
148
-
149
- self.num_patches = (self.image_size // self.patch_size) ** 2
150
- self.num_positions = self.num_patches + 1
151
-
152
- self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
-
154
- def _get_pos_embed(self, pos_embed, H, W):
155
- target_dtype = pos_embed.dtype
156
- pos_embed = pos_embed.float().reshape(
157
- 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
- pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
- reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
- return pos_embed
161
-
162
- def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
- target_dtype = self.patch_embedding.weight.dtype
164
- patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
- batch_size, _, height, width = patch_embeds.shape
166
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
- class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
- position_embedding = torch.cat([
170
- self.position_embedding[:, :1, :],
171
- self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
- ], dim=1)
173
- embeddings = embeddings + position_embedding.to(target_dtype)
174
- return embeddings
175
-
176
-
177
- class InternAttention(nn.Module):
178
- """Multi-headed attention from 'Attention Is All You Need' paper"""
179
-
180
- def __init__(self, config: InternVisionConfig):
181
- super().__init__()
182
- self.config = config
183
- self.embed_dim = config.hidden_size
184
- self.num_heads = config.num_attention_heads
185
- self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
- if config.use_flash_attn and not has_flash_attn:
187
- print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
- self.head_dim = self.embed_dim // self.num_heads
189
- if self.head_dim * self.num_heads != self.embed_dim:
190
- raise ValueError(
191
- f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
- f' {self.num_heads}).'
193
- )
194
-
195
- self.scale = self.head_dim ** -0.5
196
- self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
- self.attn_drop = nn.Dropout(config.attention_dropout)
198
- self.proj_drop = nn.Dropout(config.dropout)
199
-
200
- self.qk_normalization = config.qk_normalization
201
-
202
- if self.qk_normalization:
203
- self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
- self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
-
206
- if self.use_flash_attn:
207
- self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
- self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
-
210
- def _naive_attn(self, x):
211
- B, N, C = x.shape
212
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
-
215
- if self.qk_normalization:
216
- B_, H_, N_, D_ = q.shape
217
- q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
- k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
-
220
- attn = ((q * self.scale) @ k.transpose(-2, -1))
221
- attn = attn.softmax(dim=-1)
222
- attn = self.attn_drop(attn)
223
-
224
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
- x = self.proj(x)
226
- x = self.proj_drop(x)
227
- return x
228
-
229
- def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
- qkv = self.qkv(x)
231
- qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
-
233
- if self.qk_normalization:
234
- q, k, v = qkv.unbind(2)
235
- q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
- k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
- qkv = torch.stack([q, k, v], dim=2)
238
-
239
- context, _ = self.inner_attn(
240
- qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
- )
242
- outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
- outs = self.proj_drop(outs)
244
- return outs
245
-
246
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
- x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
- return x
249
-
250
-
251
- class InternMLP(nn.Module):
252
- def __init__(self, config: InternVisionConfig):
253
- super().__init__()
254
- self.config = config
255
- self.act = ACT2FN[config.hidden_act]
256
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
-
259
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
- hidden_states = self.fc1(hidden_states)
261
- hidden_states = self.act(hidden_states)
262
- hidden_states = self.fc2(hidden_states)
263
- return hidden_states
264
-
265
-
266
- class InternVisionEncoderLayer(nn.Module):
267
- def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
- super().__init__()
269
- self.embed_dim = config.hidden_size
270
- self.intermediate_size = config.intermediate_size
271
- self.norm_type = config.norm_type
272
-
273
- self.attn = InternAttention(config)
274
- self.mlp = InternMLP(config)
275
- self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
- self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
-
278
- self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
- self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
- self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
- self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
-
283
- def forward(
284
- self,
285
- hidden_states: torch.Tensor,
286
- ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
- """
288
- Args:
289
- hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
- """
291
- hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
-
293
- hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
-
295
- return hidden_states
296
-
297
-
298
- class InternVisionEncoder(nn.Module):
299
- """
300
- Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
- [`InternEncoderLayer`].
302
-
303
- Args:
304
- config (`InternConfig`):
305
- The corresponding vision configuration for the `InternEncoder`.
306
- """
307
-
308
- def __init__(self, config: InternVisionConfig):
309
- super().__init__()
310
- self.config = config
311
- # stochastic depth decay rule
312
- dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
- self.layers = nn.ModuleList([
314
- InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
- self.gradient_checkpointing = True
316
-
317
- def forward(
318
- self,
319
- inputs_embeds,
320
- output_hidden_states: Optional[bool] = None,
321
- return_dict: Optional[bool] = None,
322
- ) -> Union[Tuple, BaseModelOutput]:
323
- r"""
324
- Args:
325
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
- Embedded representation of the inputs. Should be float, not int tokens.
327
- output_hidden_states (`bool`, *optional*):
328
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
- for more detail.
330
- return_dict (`bool`, *optional*):
331
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
- """
333
- output_hidden_states = (
334
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
- )
336
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
-
338
- encoder_states = () if output_hidden_states else None
339
- hidden_states = inputs_embeds
340
-
341
- for idx, encoder_layer in enumerate(self.layers):
342
- if output_hidden_states:
343
- encoder_states = encoder_states + (hidden_states,)
344
- if self.gradient_checkpointing and self.training:
345
- layer_outputs = torch.utils.checkpoint.checkpoint(
346
- encoder_layer,
347
- hidden_states)
348
- else:
349
- layer_outputs = encoder_layer(
350
- hidden_states,
351
- )
352
- hidden_states = layer_outputs
353
-
354
- if output_hidden_states:
355
- encoder_states = encoder_states + (hidden_states,)
356
-
357
- if not return_dict:
358
- return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
- return BaseModelOutput(
360
- last_hidden_state=hidden_states, hidden_states=encoder_states
361
- )
362
-
363
-
364
- class InternVisionModel(PreTrainedModel):
365
- main_input_name = 'pixel_values'
366
- _supports_flash_attn_2 = True
367
- supports_gradient_checkpointing = True
368
- config_class = InternVisionConfig
369
- _no_split_modules = ['InternVisionEncoderLayer']
370
-
371
- def __init__(self, config: InternVisionConfig):
372
- super().__init__(config)
373
- self.config = config
374
-
375
- self.embeddings = InternVisionEmbeddings(config)
376
- self.encoder = InternVisionEncoder(config)
377
-
378
- def resize_pos_embeddings(self, old_size, new_size, patch_size):
379
- pos_emb = self.embeddings.position_embedding
380
- _, num_positions, embed_dim = pos_emb.shape
381
- cls_emb = pos_emb[:, :1, :]
382
- pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
383
- pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
384
- pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
385
- pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
386
- self.embeddings.position_embedding = nn.Parameter(pos_emb)
387
- self.embeddings.image_size = new_size
388
- logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
389
-
390
- def get_input_embeddings(self):
391
- return self.embeddings
392
-
393
- def forward(
394
- self,
395
- pixel_values: Optional[torch.FloatTensor] = None,
396
- output_hidden_states: Optional[bool] = None,
397
- return_dict: Optional[bool] = None,
398
- pixel_embeds: Optional[torch.FloatTensor] = None,
399
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
400
- output_hidden_states = (
401
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
402
- )
403
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
404
-
405
- if pixel_values is None and pixel_embeds is None:
406
- raise ValueError('You have to specify pixel_values or pixel_embeds')
407
-
408
- if pixel_embeds is not None:
409
- hidden_states = pixel_embeds
410
- else:
411
- if len(pixel_values.shape) == 4:
412
- hidden_states = self.embeddings(pixel_values)
413
- else:
414
- raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
415
- encoder_outputs = self.encoder(
416
- inputs_embeds=hidden_states,
417
- output_hidden_states=output_hidden_states,
418
- return_dict=return_dict,
419
- )
420
- last_hidden_state = encoder_outputs.last_hidden_state
421
- pooled_output = last_hidden_state[:, 0, :]
422
-
423
- if not return_dict:
424
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
425
-
426
- return BaseModelOutputWithPooling(
427
- last_hidden_state=last_hidden_state,
428
- pooler_output=pooled_output,
429
- hidden_states=encoder_outputs.hidden_states,
430
- attentions=encoder_outputs.attentions,
431
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/modeling_internvl_chat.py DELETED
@@ -1,359 +0,0 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2024 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
-
7
- import warnings
8
- from typing import List, Optional, Tuple, Union
9
-
10
- import torch.utils.checkpoint
11
- import transformers
12
- from torch import nn
13
- from torch.nn import CrossEntropyLoss
14
- from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
- Qwen2ForCausalLM)
16
- from transformers.modeling_outputs import CausalLMOutputWithPast
17
- from transformers.modeling_utils import PreTrainedModel
18
- from transformers.utils import ModelOutput, logging
19
-
20
- from .configuration_internvl_chat import InternVLChatConfig
21
- from .conversation import get_conv_template
22
- from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
-
24
- logger = logging.get_logger(__name__)
25
-
26
-
27
- def version_cmp(v1, v2, op='eq'):
28
- import operator
29
-
30
- from packaging import version
31
- op_func = getattr(operator, op)
32
- return op_func(version.parse(v1), version.parse(v2))
33
-
34
-
35
- class InternVLChatModel(PreTrainedModel):
36
- config_class = InternVLChatConfig
37
- main_input_name = 'pixel_values'
38
- base_model_prefix = 'language_model'
39
- _supports_flash_attn_2 = True
40
- supports_gradient_checkpointing = True
41
- _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
42
-
43
- def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
- super().__init__(config)
45
-
46
- assert version_cmp(transformers.__version__, '4.37.0', 'ge')
47
- image_size = config.force_image_size or config.vision_config.image_size
48
- patch_size = config.vision_config.patch_size
49
- self.patch_size = patch_size
50
- self.select_layer = config.select_layer
51
- self.template = config.template
52
- self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
- self.downsample_ratio = config.downsample_ratio
54
- self.ps_version = config.ps_version
55
- use_flash_attn = use_flash_attn if has_flash_attn else False
56
- config.vision_config.use_flash_attn = True if use_flash_attn else False
57
- config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
-
59
- logger.info(f'num_image_token: {self.num_image_token}')
60
- logger.info(f'ps_version: {self.ps_version}')
61
- if vision_model is not None:
62
- self.vision_model = vision_model
63
- else:
64
- self.vision_model = InternVisionModel(config.vision_config)
65
- if language_model is not None:
66
- self.language_model = language_model
67
- else:
68
- if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
- self.language_model = LlamaForCausalLM(config.llm_config)
70
- elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
71
- self.language_model = Qwen2ForCausalLM(config.llm_config)
72
- else:
73
- raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
74
-
75
- vit_hidden_size = config.vision_config.hidden_size
76
- llm_hidden_size = config.llm_config.hidden_size
77
-
78
- self.mlp1 = nn.Sequential(
79
- nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
80
- nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
81
- nn.GELU(),
82
- nn.Linear(llm_hidden_size, llm_hidden_size)
83
- )
84
-
85
- self.img_context_token_id = None
86
- self.conv_template = get_conv_template(self.template)
87
- self.system_message = self.conv_template.system_message
88
-
89
- def forward(
90
- self,
91
- pixel_values: torch.FloatTensor,
92
- input_ids: torch.LongTensor = None,
93
- attention_mask: Optional[torch.Tensor] = None,
94
- position_ids: Optional[torch.LongTensor] = None,
95
- image_flags: Optional[torch.LongTensor] = None,
96
- past_key_values: Optional[List[torch.FloatTensor]] = None,
97
- labels: Optional[torch.LongTensor] = None,
98
- use_cache: Optional[bool] = None,
99
- output_attentions: Optional[bool] = None,
100
- output_hidden_states: Optional[bool] = None,
101
- return_dict: Optional[bool] = None,
102
- ) -> Union[Tuple, CausalLMOutputWithPast]:
103
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
-
105
- image_flags = image_flags.squeeze(-1)
106
- input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
107
-
108
- vit_embeds = self.extract_feature(pixel_values)
109
- vit_embeds = vit_embeds[image_flags == 1]
110
- vit_batch_size = pixel_values.shape[0]
111
-
112
- B, N, C = input_embeds.shape
113
- input_embeds = input_embeds.reshape(B * N, C)
114
-
115
- if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
116
- print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
117
-
118
- input_ids = input_ids.reshape(B * N)
119
- selected = (input_ids == self.img_context_token_id)
120
- try:
121
- input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
- except Exception as e:
123
- vit_embeds = vit_embeds.reshape(-1, C)
124
- print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
- f'vit_embeds.shape={vit_embeds.shape}')
126
- n_token = selected.sum()
127
- input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
-
129
- input_embeds = input_embeds.reshape(B, N, C)
130
-
131
- outputs = self.language_model(
132
- inputs_embeds=input_embeds,
133
- attention_mask=attention_mask,
134
- position_ids=position_ids,
135
- past_key_values=past_key_values,
136
- use_cache=use_cache,
137
- output_attentions=output_attentions,
138
- output_hidden_states=output_hidden_states,
139
- return_dict=return_dict,
140
- )
141
- logits = outputs.logits
142
-
143
- loss = None
144
- if labels is not None:
145
- # Shift so that tokens < n predict n
146
- shift_logits = logits[..., :-1, :].contiguous()
147
- shift_labels = labels[..., 1:].contiguous()
148
- # Flatten the tokens
149
- loss_fct = CrossEntropyLoss()
150
- shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
- shift_labels = shift_labels.view(-1)
152
- # Enable model parallelism
153
- shift_labels = shift_labels.to(shift_logits.device)
154
- loss = loss_fct(shift_logits, shift_labels)
155
-
156
- if not return_dict:
157
- output = (logits,) + outputs[1:]
158
- return (loss,) + output if loss is not None else output
159
-
160
- return CausalLMOutputWithPast(
161
- loss=loss,
162
- logits=logits,
163
- past_key_values=outputs.past_key_values,
164
- hidden_states=outputs.hidden_states,
165
- attentions=outputs.attentions,
166
- )
167
-
168
- def pixel_shuffle(self, x, scale_factor=0.5):
169
- n, w, h, c = x.size()
170
- # N, W, H, C --> N, W, H * scale, C // scale
171
- x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
- # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
- x = x.permute(0, 2, 1, 3).contiguous()
174
- # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
- x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
- int(c / (scale_factor * scale_factor)))
177
- if self.ps_version == 'v1':
178
- warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
- 'which results in a transposed image.')
180
- else:
181
- x = x.permute(0, 2, 1, 3).contiguous()
182
- return x
183
-
184
- def extract_feature(self, pixel_values):
185
- if self.select_layer == -1:
186
- vit_embeds = self.vision_model(
187
- pixel_values=pixel_values,
188
- output_hidden_states=False,
189
- return_dict=True).last_hidden_state
190
- else:
191
- vit_embeds = self.vision_model(
192
- pixel_values=pixel_values,
193
- output_hidden_states=True,
194
- return_dict=True).hidden_states[self.select_layer]
195
- vit_embeds = vit_embeds[:, 1:, :]
196
-
197
- h = w = int(vit_embeds.shape[1] ** 0.5)
198
- vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
- vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
- vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
- vit_embeds = self.mlp1(vit_embeds)
202
- return vit_embeds
203
-
204
- def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
- history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
- IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
- if history is not None or return_history:
208
- print('Now multi-turn chat is not supported in batch_chat.')
209
- raise NotImplementedError
210
-
211
- if image_counts is not None:
212
- num_patches_list = image_counts
213
- print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
-
215
- img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
- self.img_context_token_id = img_context_token_id
217
-
218
- if verbose and pixel_values is not None:
219
- image_bs = pixel_values.shape[0]
220
- print(f'dynamic ViT batch size: {image_bs}')
221
-
222
- queries = []
223
- for idx, num_patches in enumerate(num_patches_list):
224
- question = questions[idx]
225
- if pixel_values is not None and '<image>' not in question:
226
- question = '<image>\n' + question
227
- template = get_conv_template(self.template)
228
- template.system_message = self.system_message
229
- template.append_message(template.roles[0], question)
230
- template.append_message(template.roles[1], None)
231
- query = template.get_prompt()
232
-
233
- image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
- query = query.replace('<image>', image_tokens, 1)
235
- queries.append(query)
236
-
237
- tokenizer.padding_side = 'left'
238
- model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
- input_ids = model_inputs['input_ids'].to(self.device)
240
- attention_mask = model_inputs['attention_mask'].to(self.device)
241
- eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
- generation_config['eos_token_id'] = eos_token_id
243
- generation_output = self.generate(
244
- pixel_values=pixel_values,
245
- input_ids=input_ids,
246
- attention_mask=attention_mask,
247
- **generation_config
248
- )
249
- responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
- responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
- return responses
252
-
253
- def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
- num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
- verbose=False):
256
-
257
- if history is None and pixel_values is not None and '<image>' not in question:
258
- question = '<image>\n' + question
259
-
260
- if num_patches_list is None:
261
- num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
- assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
-
264
- img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
- self.img_context_token_id = img_context_token_id
266
-
267
- template = get_conv_template(self.template)
268
- template.system_message = self.system_message
269
- eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
-
271
- history = [] if history is None else history
272
- for (old_question, old_answer) in history:
273
- template.append_message(template.roles[0], old_question)
274
- template.append_message(template.roles[1], old_answer)
275
- template.append_message(template.roles[0], question)
276
- template.append_message(template.roles[1], None)
277
- query = template.get_prompt()
278
-
279
- if verbose and pixel_values is not None:
280
- image_bs = pixel_values.shape[0]
281
- print(f'dynamic ViT batch size: {image_bs}')
282
-
283
- for num_patches in num_patches_list:
284
- image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
- query = query.replace('<image>', image_tokens, 1)
286
-
287
- model_inputs = tokenizer(query, return_tensors='pt')
288
- input_ids = model_inputs['input_ids'].to(self.device)
289
- attention_mask = model_inputs['attention_mask'].to(self.device)
290
- generation_config['eos_token_id'] = eos_token_id
291
- generation_output = self.generate(
292
- pixel_values=pixel_values,
293
- input_ids=input_ids,
294
- attention_mask=attention_mask,
295
- **generation_config
296
- )
297
- response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
298
- response = response.split(template.sep.strip())[0].strip()
299
- history.append((question, response))
300
- if return_history:
301
- return response, history
302
- else:
303
- query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
304
- query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
305
- if verbose:
306
- print(query_to_print, response)
307
- return response
308
-
309
- @torch.no_grad()
310
- def generate(
311
- self,
312
- pixel_values: Optional[torch.FloatTensor] = None,
313
- input_ids: Optional[torch.FloatTensor] = None,
314
- attention_mask: Optional[torch.LongTensor] = None,
315
- visual_features: Optional[torch.FloatTensor] = None,
316
- generation_config: Optional[GenerationConfig] = None,
317
- output_hidden_states: Optional[bool] = None,
318
- **generate_kwargs,
319
- ) -> torch.LongTensor:
320
-
321
- assert self.img_context_token_id is not None
322
- if pixel_values is not None:
323
- if visual_features is not None:
324
- vit_embeds = visual_features
325
- else:
326
- vit_embeds = self.extract_feature(pixel_values)
327
- input_embeds = self.language_model.get_input_embeddings()(input_ids)
328
- B, N, C = input_embeds.shape
329
- input_embeds = input_embeds.reshape(B * N, C)
330
-
331
- input_ids = input_ids.reshape(B * N)
332
- selected = (input_ids == self.img_context_token_id)
333
- assert selected.sum() != 0
334
- input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
335
-
336
- input_embeds = input_embeds.reshape(B, N, C)
337
- else:
338
- input_embeds = self.language_model.get_input_embeddings()(input_ids)
339
-
340
- outputs = self.language_model.generate(
341
- inputs_embeds=input_embeds,
342
- attention_mask=attention_mask,
343
- generation_config=generation_config,
344
- output_hidden_states=output_hidden_states,
345
- use_cache=True,
346
- **generate_kwargs,
347
- )
348
-
349
- return outputs
350
-
351
- @property
352
- def lm_head(self):
353
- return self.language_model.get_output_embeddings()
354
-
355
- def get_input_embeddings(self):
356
- return self.language_model.get_input_embeddings()
357
-
358
- def get_output_embeddings(self):
359
- return self.language_model.get_output_embeddings()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/special_tokens_map.json DELETED
@@ -1,87 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>",
16
- {
17
- "content": "<loc>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- {
24
- "content": "</loc>",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- {
31
- "content": "<FRONT VIEW>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- {
38
- "content": "<FRONT LEFT VIEW>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- {
45
- "content": "<FRONT RIGHT VIEW>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- },
51
- {
52
- "content": "<BACK LEFT VIEW>",
53
- "lstrip": false,
54
- "normalized": false,
55
- "rstrip": false,
56
- "single_word": false
57
- },
58
- {
59
- "content": "<BACK RIGHT VIEW>",
60
- "lstrip": false,
61
- "normalized": false,
62
- "rstrip": false,
63
- "single_word": false
64
- },
65
- {
66
- "content": "<BACK VIEW>",
67
- "lstrip": false,
68
- "normalized": false,
69
- "rstrip": false,
70
- "single_word": false
71
- }
72
- ],
73
- "eos_token": {
74
- "content": "<|im_end|>",
75
- "lstrip": false,
76
- "normalized": false,
77
- "rstrip": false,
78
- "single_word": false
79
- },
80
- "pad_token": {
81
- "content": "<|endoftext|>",
82
- "lstrip": false,
83
- "normalized": false,
84
- "rstrip": false,
85
- "single_word": false
86
- }
87
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/tokenizer_config.json DELETED
@@ -1,353 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_eos_token": false,
4
- "add_prefix_space": false,
5
- "added_tokens_decoder": {
6
- "151643": {
7
- "content": "<|endoftext|>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false,
12
- "special": true
13
- },
14
- "151644": {
15
- "content": "<|im_start|>",
16
- "lstrip": false,
17
- "normalized": false,
18
- "rstrip": false,
19
- "single_word": false,
20
- "special": true
21
- },
22
- "151645": {
23
- "content": "<|im_end|>",
24
- "lstrip": false,
25
- "normalized": false,
26
- "rstrip": false,
27
- "single_word": false,
28
- "special": true
29
- },
30
- "151646": {
31
- "content": "<|object_ref_start|>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false,
36
- "special": true
37
- },
38
- "151647": {
39
- "content": "<|object_ref_end|>",
40
- "lstrip": false,
41
- "normalized": false,
42
- "rstrip": false,
43
- "single_word": false,
44
- "special": true
45
- },
46
- "151648": {
47
- "content": "<|box_start|>",
48
- "lstrip": false,
49
- "normalized": false,
50
- "rstrip": false,
51
- "single_word": false,
52
- "special": true
53
- },
54
- "151649": {
55
- "content": "<|box_end|>",
56
- "lstrip": false,
57
- "normalized": false,
58
- "rstrip": false,
59
- "single_word": false,
60
- "special": true
61
- },
62
- "151650": {
63
- "content": "<|quad_start|>",
64
- "lstrip": false,
65
- "normalized": false,
66
- "rstrip": false,
67
- "single_word": false,
68
- "special": true
69
- },
70
- "151651": {
71
- "content": "<|quad_end|>",
72
- "lstrip": false,
73
- "normalized": false,
74
- "rstrip": false,
75
- "single_word": false,
76
- "special": true
77
- },
78
- "151652": {
79
- "content": "<|vision_start|>",
80
- "lstrip": false,
81
- "normalized": false,
82
- "rstrip": false,
83
- "single_word": false,
84
- "special": true
85
- },
86
- "151653": {
87
- "content": "<|vision_end|>",
88
- "lstrip": false,
89
- "normalized": false,
90
- "rstrip": false,
91
- "single_word": false,
92
- "special": true
93
- },
94
- "151654": {
95
- "content": "<|vision_pad|>",
96
- "lstrip": false,
97
- "normalized": false,
98
- "rstrip": false,
99
- "single_word": false,
100
- "special": true
101
- },
102
- "151655": {
103
- "content": "<|image_pad|>",
104
- "lstrip": false,
105
- "normalized": false,
106
- "rstrip": false,
107
- "single_word": false,
108
- "special": true
109
- },
110
- "151656": {
111
- "content": "<|video_pad|>",
112
- "lstrip": false,
113
- "normalized": false,
114
- "rstrip": false,
115
- "single_word": false,
116
- "special": true
117
- },
118
- "151657": {
119
- "content": "<tool_call>",
120
- "lstrip": false,
121
- "normalized": false,
122
- "rstrip": false,
123
- "single_word": false,
124
- "special": false
125
- },
126
- "151658": {
127
- "content": "</tool_call>",
128
- "lstrip": false,
129
- "normalized": false,
130
- "rstrip": false,
131
- "single_word": false,
132
- "special": false
133
- },
134
- "151659": {
135
- "content": "<|fim_prefix|>",
136
- "lstrip": false,
137
- "normalized": false,
138
- "rstrip": false,
139
- "single_word": false,
140
- "special": false
141
- },
142
- "151660": {
143
- "content": "<|fim_middle|>",
144
- "lstrip": false,
145
- "normalized": false,
146
- "rstrip": false,
147
- "single_word": false,
148
- "special": false
149
- },
150
- "151661": {
151
- "content": "<|fim_suffix|>",
152
- "lstrip": false,
153
- "normalized": false,
154
- "rstrip": false,
155
- "single_word": false,
156
- "special": false
157
- },
158
- "151662": {
159
- "content": "<|fim_pad|>",
160
- "lstrip": false,
161
- "normalized": false,
162
- "rstrip": false,
163
- "single_word": false,
164
- "special": false
165
- },
166
- "151663": {
167
- "content": "<|repo_name|>",
168
- "lstrip": false,
169
- "normalized": false,
170
- "rstrip": false,
171
- "single_word": false,
172
- "special": false
173
- },
174
- "151664": {
175
- "content": "<|file_sep|>",
176
- "lstrip": false,
177
- "normalized": false,
178
- "rstrip": false,
179
- "single_word": false,
180
- "special": false
181
- },
182
- "151665": {
183
- "content": "<img>",
184
- "lstrip": false,
185
- "normalized": false,
186
- "rstrip": false,
187
- "single_word": false,
188
- "special": true
189
- },
190
- "151666": {
191
- "content": "</img>",
192
- "lstrip": false,
193
- "normalized": false,
194
- "rstrip": false,
195
- "single_word": false,
196
- "special": true
197
- },
198
- "151667": {
199
- "content": "<IMG_CONTEXT>",
200
- "lstrip": false,
201
- "normalized": false,
202
- "rstrip": false,
203
- "single_word": false,
204
- "special": true
205
- },
206
- "151668": {
207
- "content": "<quad>",
208
- "lstrip": false,
209
- "normalized": false,
210
- "rstrip": false,
211
- "single_word": false,
212
- "special": true
213
- },
214
- "151669": {
215
- "content": "</quad>",
216
- "lstrip": false,
217
- "normalized": false,
218
- "rstrip": false,
219
- "single_word": false,
220
- "special": true
221
- },
222
- "151670": {
223
- "content": "<ref>",
224
- "lstrip": false,
225
- "normalized": false,
226
- "rstrip": false,
227
- "single_word": false,
228
- "special": true
229
- },
230
- "151671": {
231
- "content": "</ref>",
232
- "lstrip": false,
233
- "normalized": false,
234
- "rstrip": false,
235
- "single_word": false,
236
- "special": true
237
- },
238
- "151672": {
239
- "content": "<box>",
240
- "lstrip": false,
241
- "normalized": false,
242
- "rstrip": false,
243
- "single_word": false,
244
- "special": true
245
- },
246
- "151673": {
247
- "content": "</box>",
248
- "lstrip": false,
249
- "normalized": false,
250
- "rstrip": false,
251
- "single_word": false,
252
- "special": true
253
- },
254
- "151674": {
255
- "content": "<loc>",
256
- "lstrip": false,
257
- "normalized": false,
258
- "rstrip": false,
259
- "single_word": false,
260
- "special": true
261
- },
262
- "151675": {
263
- "content": "</loc>",
264
- "lstrip": false,
265
- "normalized": false,
266
- "rstrip": false,
267
- "single_word": false,
268
- "special": true
269
- },
270
- "151676": {
271
- "content": "<FRONT VIEW>",
272
- "lstrip": false,
273
- "normalized": false,
274
- "rstrip": false,
275
- "single_word": false,
276
- "special": true
277
- },
278
- "151677": {
279
- "content": "<FRONT LEFT VIEW>",
280
- "lstrip": false,
281
- "normalized": false,
282
- "rstrip": false,
283
- "single_word": false,
284
- "special": true
285
- },
286
- "151678": {
287
- "content": "<FRONT RIGHT VIEW>",
288
- "lstrip": false,
289
- "normalized": false,
290
- "rstrip": false,
291
- "single_word": false,
292
- "special": true
293
- },
294
- "151679": {
295
- "content": "<BACK LEFT VIEW>",
296
- "lstrip": false,
297
- "normalized": false,
298
- "rstrip": false,
299
- "single_word": false,
300
- "special": true
301
- },
302
- "151680": {
303
- "content": "<BACK RIGHT VIEW>",
304
- "lstrip": false,
305
- "normalized": false,
306
- "rstrip": false,
307
- "single_word": false,
308
- "special": true
309
- },
310
- "151681": {
311
- "content": "<BACK VIEW>",
312
- "lstrip": false,
313
- "normalized": false,
314
- "rstrip": false,
315
- "single_word": false,
316
- "special": true
317
- }
318
- },
319
- "additional_special_tokens": [
320
- "<|im_start|>",
321
- "<|im_end|>",
322
- "<|object_ref_start|>",
323
- "<|object_ref_end|>",
324
- "<|box_start|>",
325
- "<|box_end|>",
326
- "<|quad_start|>",
327
- "<|quad_end|>",
328
- "<|vision_start|>",
329
- "<|vision_end|>",
330
- "<|vision_pad|>",
331
- "<|image_pad|>",
332
- "<|video_pad|>",
333
- "<loc>",
334
- "</loc>",
335
- "<FRONT VIEW>",
336
- "<FRONT LEFT VIEW>",
337
- "<FRONT RIGHT VIEW>",
338
- "<BACK LEFT VIEW>",
339
- "<BACK RIGHT VIEW>",
340
- "<BACK VIEW>"
341
- ],
342
- "bos_token": null,
343
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
344
- "clean_up_tokenization_spaces": false,
345
- "eos_token": "<|im_end|>",
346
- "errors": "replace",
347
- "extra_special_tokens": {},
348
- "model_max_length": 12288,
349
- "pad_token": "<|endoftext|>",
350
- "split_special_tokens": false,
351
- "tokenizer_class": "Qwen2Tokenizer",
352
- "unk_token": null
353
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/train_results.json DELETED
@@ -1,8 +0,0 @@
1
- {
2
- "epoch": 3.0,
3
- "train_loss": 0.5695364278321172,
4
- "train_runtime": 108001.0924,
5
- "train_samples": 696801,
6
- "train_samples_per_second": 19.355,
7
- "train_steps_per_second": 0.019
8
- }
 
 
 
 
 
 
 
 
 
ReCogDrive_VLM/trainer_state.json DELETED
The diff for this file is too large to render. See raw diff
 
ReCogDrive_VLM/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a74c5bf571688786bc447593425f76049c3839e60e4694e6fc5a5929bc134a8e
3
- size 6392
 
 
 
 
ReCogDrive_VLM/training_log.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e150b4a44d25983f160c8488e59b7cb7cb3f49beb86e7ebfaf7843d620e80edd
3
- size 19282745
 
 
 
 
ReCogDrive_VLM/vocab.json DELETED
The diff for this file is too large to render. See raw diff