takanezawa's picture
サンプルハンドラーレスポンスを採用する
ac3ea59
raw
history blame
1.84 kB
from typing import Dict, List, Any
# from optimum.onnxruntime import ORTModelForSequenceClassification
# from transformers import pipeline, AutoTokenizer
from FlagEmbedding import BGEM3FlagModel
class EndpointHandler():
def __init__(self, path="./"):
# load the optimized model
# モデルの準備
self.model = BGEM3FlagModel("./", use_fp16=False)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
sparse_embs = []
# result = self.model.encode(inputs, return_dense=False, return_sparse=True)
# sparse_vectors = result["lexical_weights"]
# for sparse_vector in sparse_vectors:
# sparse_values = [value for value in sparse_vector.values()]
# sparse_dimensions = [int(key) for key in sparse_vector.keys()]
# sparse_embs.append((sparse_values, sparse_dimensions))
# pass inputs with all kwargs in data
# if parameters is not None:
# prediction = self.pipeline(inputs, **parameters)
# else:
# prediction = self.pipeline(inputs)
# postprocess the prediction
return [
[
{"label": 0, "score": 0.5}
]
]