Papers
arxiv:2211.03256

On Web-based Visual Corpus Construction for Visual Document Understanding

Published on Nov 7, 2022
Authors:
,
,
,

Abstract

In recent years, research on visual document understanding (VDU) has grown significantly, with a particular emphasis on the development of self-supervised learning methods. However, one of the significant challenges faced in this field is the limited availability of publicly accessible visual corpora or extensive collections of images with detailed text annotations, particularly for non-Latin or resource-scarce languages. To address this challenge, we propose Web-based Visual Corpus Builder (Webvicob), a dataset generator engine capable of constructing large-scale, multilingual visual corpora from raw Wikipedia HTML dumps. Our experiments demonstrate that the data generated by Webvicob can be used to train robust VDU models that perform well on various downstream tasks, such as DocVQA and post-OCR parsing. Furthermore, when using a dataset of 1 million images generated by Webvicob, we observed an improvement of over 13% on the DocVQA Task 3 compared to a dataset of 11 million images from the IIT-CDIP. The implementation of our engine is publicly available on https://github.com/clovaai/webvicob

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2211.03256 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2211.03256 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2211.03256 in a Space README.md to link it from this page.

Collections including this paper 2