Papers
arxiv:2403.01851

Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral

Published on Mar 4, 2024
Authors:
,

Abstract

Mixtral, a representative sparse mixture of experts (SMoE) language model, has received significant attention due to its unique model design and superior performance. Based on Mixtral-8x7B-v0.1, in this paper, we propose Chinese-Mixtral and Chinese-Mixtral-Instruct with improved Chinese language abilities by adopting further pre-training and instruction fine-tuning. Experimental results show that our Chinese-Mixtral and Chinese-Mixtral-Instruct successfully improve Chinese understanding and generation performance while retaining the original English abilities. Then, we discuss several key questions when performing language adaptation on large language models, including the necessity of extending the language-specific vocabulary and the choice of the initialization model (foundation model v.s. instruction model), by providing empirical results and analysis. We also present the visualizations of each expert to examine their importance on downstream tasks. Our resources are publicly available through https://github.com/ymcui/Chinese-Mixtral.

Community

Sign up or log in to comment

Models citing this paper 7

Browse 7 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2403.01851 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.01851 in a Space README.md to link it from this page.

Collections including this paper 1