REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
Abstract
A novel non-gradient-based method, REVS, is proposed for unlearning sensitive tokens from language models, demonstrating superior performance and robustness compared to existing methods.
Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns. Current approaches to address this issue involve costly dataset scrubbing, or model filtering through unlearning and model editing, which can be bypassed through extraction attacks. We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs. REVS identifies and modifies a small subset of neurons relevant for constituent tokens that form sensitive information. To adequately evaluate our method on truly sensitive information, we curate three datasets: email and URL datasets naturally memorized by the models, and a synthetic social security number dataset that we tune the models to memorize. Compared to other methods, REVS demonstrates superior performance in unlearning sensitive information and robustness to extraction attacks, while retaining underlying model integrity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper