SambaMixer: State of Health Prediction of Li-ion Batteries using Mamba State Space Models
Abstract
The state of health (SOH) of a Li-ion battery is a critical parameter that determines the remaining capacity and the remaining lifetime of the battery. In this paper, we propose SambaMixer a novel structured state space model (SSM) for predicting the state of health of Li-ion batteries. The proposed SSM is based on the MambaMixer architecture, which is designed to handle multi-variate time signals. We evaluate our model on the NASA battery discharge dataset and show that our model outperforms the state-of-the-art on this dataset. We further introduce a novel anchor-based resampling method which ensures time signals are of the expected length while also serving as augmentation technique. Finally, we condition prediction on the sample time and the cycle time difference using positional encodings to improve the performance of our model and to learn recuperation effects. Our results proof that our model is able to predict the SOH of Li-ion batteries with high accuracy and robustness.
Community
The state of health (SOH) of a Li-ion battery is a critical parameter that determines the remaining capacity and the remaining lifetime of the battery. In this paper, we propose SambaMixer a novel structured state space model (SSM) for predicting the state of health of Li-ion batteries. The proposed SSM is based on the MambaMixer architecture, which is designed to handle multi-variate time signals. We evaluate our model on the NASA battery discharge dataset and show that our model outperforms the state-of-the-art on this dataset. We further introduce a novel anchor-based resampling method which ensures time signals are of the expected length while also serving as augmentation technique. Finally, we condition prediction on the sample time and the cycle time difference using positional encodings to improve the performance of our model and to learn recuperation effects. Our results proof that our model is able to predict the SOH of Li-ion batteries with high accuracy and robustness.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper