Papers
arxiv:2502.13145

Multimodal Mamba: Decoder-only Multimodal State Space Model via Quadratic to Linear Distillation

Published on Feb 18
· Submitted by LegendBC on Feb 19
Authors:
,
,
,

Abstract

Recent Multimodal Large Language Models (MLLMs) have achieved remarkable performance but face deployment challenges due to their quadratic computational complexity, growing Key-Value cache requirements, and reliance on separate vision encoders. We propose mmMamba, a framework for developing linear-complexity native multimodal state space models through progressive distillation from existing MLLMs using moderate academic computational resources. Our approach enables the direct conversion of trained decoder-only MLLMs to linear-complexity architectures without requiring pre-trained RNN-based LLM or vision encoders. We propose an seeding strategy to carve Mamba from trained Transformer and a three-stage distillation recipe, which can effectively transfer the knowledge from Transformer to Mamba while preserving multimodal capabilities. Our method also supports flexible hybrid architectures that combine Transformer and Mamba layers for customizable efficiency-performance trade-offs. Distilled from the Transformer-based decoder-only HoVLE, mmMamba-linear achieves competitive performance against existing linear and quadratic-complexity VLMs, while mmMamba-hybrid further improves performance significantly, approaching HoVLE's capabilities. At 103K tokens, mmMamba-linear demonstrates 20.6times speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves 13.5times speedup and 60.2% memory savings. Code and models are released at https://github.com/hustvl/mmMamba

Community

Paper author Paper submitter
edited 3 days ago

code and models are available at https://github.com/hustvl/mmMamba

We propose mmMamba, the first decoder-only multimodal state space model achieved through quadratic to linear distillation using moderate academic computing resources. Unlike existing linear-complexity encoder-based multimodal large language models (MLLMs), mmMamba eliminates the need for separate vision encoders and underperforming pre-trained RNN-based LLMs. Through our seeding strategy and three-stage progressive distillation recipe, mmMamba effectively transfers knowledge from quadratic-complexity decoder-only pre-trained MLLMs while preserving multimodal capabilities. Additionally, mmMamba introduces flexible hybrid architectures that strategically combine Transformer and Mamba layers, enabling customizable trade-offs between computational efficiency and model performance.

Distilled from the decoder-only HoVLE-2.6B, our pure Mamba-2-based mmMamba-linear achieves performance competitive with existing linear and quadratic-complexity VLMs, including those with 2x larger parameter size like EVE-7B. The hybrid variant, mmMamba-hybrid, further enhances performance across all benchmarks, approaching the capabilities of the teacher model HoVLE. In long-context scenarios with 103K tokens, mmMamba-linear demonstrates remarkable efficiency gains with a 20.6× speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves a 13.5× speedup and 60.2% memory savings.
teaser.png

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2502.13145 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2502.13145 in a Space README.md to link it from this page.

Collections including this paper 2