SAGDA: Open-Source Synthetic Agriculture Data for Africa
Abstract
SAGDA, an open-source toolkit, generates and augments synthetic agricultural datasets to enhance machine learning performance in precision agriculture, particularly in data-scarce African contexts.
Data scarcity in African agriculture hampers machine learning (ML) model performance, limiting innovations in precision agriculture. The Synthetic Agriculture Data for Africa (SAGDA) library, a Python-based open-source toolkit, addresses this gap by generating, augmenting, and validating synthetic agricultural datasets. We present SAGDA's design and development practices, highlighting its core functions: generate, model, augment, validate, visualize, optimize, and simulate, as well as their roles in applications of ML for agriculture. Two use cases are detailed: yield prediction enhanced via data augmentation, and multi-objective NPK (nitrogen, phosphorus, potassium) fertilizer recommendation. We conclude with future plans for expanding SAGDA's capabilities, underscoring the vital role of open-source, data-driven practices for African agriculture.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper