Abstract
A multi-agent LLM system named Genesys simulates the research process to discover novel LM architectures using genetic programming, achieving competitive performance on benchmarks with fewer models trained.
Can we leverage LLMs to model the process of discovering novel language model (LM) architectures? Inspired by real research, we propose a multi-agent LLM approach that simulates the conventional stages of research, from ideation and literature search (proposal stage) to design implementation (code generation), generative pre-training, and downstream evaluation (verification). Using ideas from scaling laws, our system, Genesys, employs a Ladder of Scales approach; new designs are proposed, adversarially reviewed, implemented, and selectively verified at increasingly larger model scales (14Msim350M parameters) with a narrowing budget (the number of models we can train at each scale). To help make discovery efficient and factorizable, Genesys uses a novel genetic programming backbone, which we show has empirical advantages over commonly used direct prompt generation workflows (e.g., sim86\% percentage point improvement in successful design generation, a key bottleneck). We report experiments involving 1,162 newly discovered designs (1,062 fully verified through pre-training) and find the best designs to be highly competitive with known architectures (e.g., outperform GPT2, Mamba2, etc., on 6/9 common benchmarks). We couple these results with comprehensive system-level ablations and formal results, which give broader insights into the design of effective autonomous discovery systems.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper