Expert-level validation of AI-generated medical text with scalable language models
Abstract
MedVAL, a self-supervised framework using synthetic data, enhances the evaluation of language models' medical text accuracy and safety without physician labels.
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a self-supervised framework that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset containing 840 outputs annotated by physicians, following a physician-defined taxonomy of risk levels and error categories. Across 6 diverse medical tasks and 10 state-of-the-art LMs spanning open-source, proprietary, and medically adapted models, MedVAL fine-tuning significantly improves (p < 0.001) alignment with physicians on both seen and unseen tasks, increasing average F1 scores from 66% to 83%, with per-sample safety classification scores up to 86%. MedVAL improves the performance of even the best-performing proprietary LM (GPT-4o) by 8%. To support a scalable, risk-aware pathway towards clinical integration, we open-source the 1) codebase ( https://github.com/StanfordMIMI/MedVAL ), 2) MedVAL-Bench ( https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench ), and 3) MedVAL-4B ( https://huggingface.co/stanfordmimi/MedVAL-4B ), the best-performing open-source LM. Our research provides the first evidence of LMs approaching expert-level validation ability for medical text.
Models citing this paper 1
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper