Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling
Abstract
The study analyzes the behavior of an indirect signalling chemotaxis system under two singular limits, providing rigorous analysis including convergence rates and critical manifold convergence.
Under relevant biological situations of the signalling process on a much faster time scale compared to the species diffusion and all interactions, we study two singular limits corresponding to varepsilonto 0^+ with a fixed tau>0, and (varepsilon,tau)to (0^+,0^+) arising in the following indirect signalling chemotaxis system with no-flux accross the boundary align* \left\{array{lllllll} \partial_t n=\Delta n-\nabla\cdot(n\nabla c)&in \Omega\times(0,\infty),\\ \varepsilon\partial_t c=\Delta c-c+w&in \Omega\times(0,\infty),\\ \varepsilon\partial_t w=\tau\Delta w-w+n&in \Omega\times(0,\infty),\\ (n,c,w)_{t=0}=(n_0,c_0,w_0)&on \Omega, array\right. align* up to the critical dimension N=4, called parabolic-elliptic and indirect-direct simplifications, respectively. We provide rigorous analysis for these simplifications, including passage to the limits, convergence rate estimates with the initial layer effect, and the convergence to critical manifolds.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper