SABER: Switchable and Balanced Training for Efficient LLM Reasoning
Abstract
SABER, a reinforcement learning framework, optimizes large language models for efficient reasoning by assigning token budgets and supporting multiple inference modes, enhancing accuracy and reducing latency.
Large language models (LLMs) empowered by chain-of-thought reasoning have achieved impressive accuracy on complex tasks but suffer from excessive inference costs and latency when applied uniformly to all problems. We propose SABER (Switchable and Balanced Training for Efficient LLM Reasoning), a reinforcement learning framework that endows LLMs with user-controllable, token-budgeted reasoning. SABER first profiles each training example's base-model thinking token usage and assigns it to one of the predefined budget tiers. During fine-tuning, the model is guided by system prompts and length-aware rewards to respect its assigned budget. In parallel, we incorporate no-think examples to ensure the model remains reliable even when explicit reasoning is turned off. SABER further supports four discrete inference modes - NoThink, FastThink, CoreThink, and DeepThink, enabling flexible trade-offs between latency and reasoning depth. Extensive evaluations on math reasoning (MATH, GSM8K), code generation (MBPP), and logical reasoning (LiveBench-Reasoning) demonstrate that SABER achieves high accuracy under tight budgets, graceful degradation, and effective cross-scale and cross-domain generalization. In particular, SABER-FastThink cuts reasoning length by 65.4% and yields a 3.6% accuracy gain compared with the base model on the MATH benchmark.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper