GeoRemover: Removing Objects and Their Causal Visual Artifacts
Abstract
A geometry-aware two-stage framework for intelligent image editing effectively removes objects and their causal visual artifacts by decoupling geometry removal and appearance rendering.
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.
Community
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these casual effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object’s geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- ROSE: Remove Objects with Side Effects in Videos (2025)
- Realistic and Controllable 3D Gaussian-Guided Object Editing for Driving Video Generation (2025)
- SplatFill: 3D Scene Inpainting via Depth-Guided Gaussian Splatting (2025)
- Mask Consistency Regularization in Object Removal (2025)
- GSFix3D: Diffusion-Guided Repair of Novel Views in Gaussian Splatting (2025)
- Rethinking Transparent Object Grasping: Depth Completion with Monocular Depth Estimation and Instance Mask (2025)
- PosBridge: Multi-View Positional Embedding Transplant for Identity-Aware Image Editing (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper