Papers
arxiv:2510.19414

EchoFake: A Replay-Aware Dataset for Practical Speech Deepfake Detection

Published on Oct 22
Authors:
,
,

Abstract

EchoFake, a comprehensive dataset with real-world audio recordings, improves spoofing detection models' performance and generalization in practical settings.

AI-generated summary

The growing prevalence of speech deepfakes has raised serious concerns, particularly in real-world scenarios such as telephone fraud and identity theft. While many anti-spoofing systems have demonstrated promising performance on lab-generated synthetic speech, they often fail when confronted with physical replay attacks-a common and low-cost form of attack used in practical settings. Our experiments show that models trained on existing datasets exhibit severe performance degradation, with average accuracy dropping to 59.6% when evaluated on replayed audio. To bridge this gap, we present EchoFake, a comprehensive dataset comprising more than 120 hours of audio from over 13,000 speakers, featuring both cutting-edge zero-shot text-to-speech (TTS) speech and physical replay recordings collected under varied devices and real-world environmental settings. Additionally, we evaluate three baseline detection models and show that models trained on EchoFake achieve lower average EERs across datasets, indicating better generalization. By introducing more practical challenges relevant to real-world deployment, EchoFake offers a more realistic foundation for advancing spoofing detection methods.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.19414 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.19414 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.