2 DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition We introduce DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals are synthesized into a chain-of-thought process, combined with DeepSeek-V3's step-by-step reasoning, to create an initial cold start for reinforcement learning. This process enables us to integrate both informal and formal mathematical reasoning into a unified model. The resulting model, DeepSeek-Prover-V2-671B, achieves state-of-the-art performance in neural theorem proving, reaching 88.9% pass ratio on the MiniF2F-test and solving 49 out of 658 problems from PutnamBench. In addition to standard benchmarks, we introduce ProverBench, a collection of 325 formalized problems, to enrich our evaluation, including 15 selected problems from the recent AIME competitions (years 24-25). Further evaluation on these 15 AIME problems shows that the model successfully solves 6 of them. In comparison, DeepSeek-V3 solves 8 of these problems using majority voting, highlighting that the gap between formal and informal mathematical reasoning in large language models is substantially narrowing. 18 authors · Apr 30
- Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, o3-mini, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly, achieving less than 5% on average. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities. 8 authors · Mar 27
- HARP: A challenging human-annotated math reasoning benchmark Math reasoning is becoming an ever increasing area of focus as we scale large language models. However, even the previously-toughest evals like MATH are now close to saturated by frontier models (90.0% for o1-mini and 86.5% for Gemini 1.5 Pro). We introduce HARP, Human Annotated Reasoning Problems (for Math), consisting of 5,409 problems from the US national math competitions (A(J)HSME, AMC, AIME, USA(J)MO). Of these, 4,780 have answers that are automatically check-able (with libraries such as SymPy). These problems range six difficulty levels, with frontier models performing relatively poorly on the hardest bracket of 197 problems (average accuracy 41.1% for o1-mini, and 9.6% for Gemini 1.5 Pro). Our dataset also features multiple choices (for 4,110 problems) and an average of two human-written, ground-truth solutions per problem, offering new avenues of research that we explore briefly. We report evaluations for many frontier models and share some interesting analyses, such as demonstrating that frontier models across families intrinsically scale their inference-time compute for more difficult problems. Finally, we open source all code used for dataset construction (including scraping) and all code for evaluation (including answer checking) to enable future research at: https://github.com/aadityasingh/HARP. 5 authors · Dec 11, 2024 2