Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeObject Detectors Emerge in Deep Scene CNNs
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
CNNSum: Exploring Long-Context Summarization with Large Language Models in Chinese Novels
Large Language Models (LLMs) have been well-researched in various long-context tasks. However, the scarcity of high-quality long-context summarization datasets has hindered further advancements in this area. To address this, we introduce CNNSum, a multi-scale long-context summarization benchmark based on Chinese novels, featuring human-driven annotations, which comprises four subsets totaling 695 samples, with lengths ranging from 16k to 128k. We evaluate numerous LLMs and conduct detailed case analyses. Furthermore, we conduct extensive fine-tuning experiments to explore and improve long-context summarization. In our study: (1) Advanced LLMs like GPT-4o may still generate subjective commentary, leading to vague summaries. (2) Currently, long-context summarization mainly relies on memory ability afforded by longer context lengths. The advantages of Large LLMs are hard to utilize, thus small LLMs are the most cost-effective. (3) Different prompt templates paired with various version models may cause large performance gaps. In further fine-tuning, these can be mitigated, and the Base version models perform better. (4) LLMs with RoPE-base scaled exhibit strong extrapolation potential; using short-context data can significantly improve long-context summarization performance. However, further applying other interpolation methods requires careful selection. (5) CNNSum provides more reliable and insightful evaluation results than other benchmarks. We release CNNSum to advance future research in this field. https://github.com/CxsGhost/CNNSum
Scaling Spherical CNNs
Spherical CNNs generalize CNNs to functions on the sphere, by using spherical convolutions as the main linear operation. The most accurate and efficient way to compute spherical convolutions is in the spectral domain (via the convolution theorem), which is still costlier than the usual planar convolutions. For this reason, applications of spherical CNNs have so far been limited to small problems that can be approached with low model capacity. In this work, we show how spherical CNNs can be scaled for much larger problems. To achieve this, we make critical improvements including novel variants of common model components, an implementation of core operations to exploit hardware accelerator characteristics, and application-specific input representations that exploit the properties of our model. Experiments show our larger spherical CNNs reach state-of-the-art on several targets of the QM9 molecular benchmark, which was previously dominated by equivariant graph neural networks, and achieve competitive performance on multiple weather forecasting tasks. Our code is available at https://github.com/google-research/spherical-cnn.
Beyond CNNs: Efficient Fine-Tuning of Multi-Modal LLMs for Object Detection on Low-Data Regimes
The field of object detection and understanding is rapidly evolving, driven by advances in both traditional CNN-based models and emerging multi-modal large language models (LLMs). While CNNs like ResNet and YOLO remain highly effective for image-based tasks, recent transformer-based LLMs introduce new capabilities such as dynamic context reasoning, language-guided prompts, and holistic scene understanding. However, when used out-of-the-box, the full potential of LLMs remains underexploited, often resulting in suboptimal performance on specialized visual tasks. In this work, we conduct a comprehensive comparison of fine-tuned traditional CNNs, zero-shot pre-trained multi-modal LLMs, and fine-tuned multi-modal LLMs on the challenging task of artificial text overlay detection in images. A key contribution of our study is demonstrating that LLMs can be effectively fine-tuned on very limited data (fewer than 1,000 images) to achieve up to 36% accuracy improvement, matching or surpassing CNN-based baselines that typically require orders of magnitude more data. By exploring how language-guided models can be adapted for precise visual understanding with minimal supervision, our work contributes to the broader effort of bridging vision and language, offering novel insights into efficient cross-modal learning strategies. These findings highlight the adaptability and data efficiency of LLM-based approaches for real-world object detection tasks and provide actionable guidance for applying multi-modal transformers in low-resource visual environments. To support continued progress in this area, we have made the code used to fine-tune the models available in our GitHub, enabling future improvements and reuse in related applications.
Linear CNNs Discover the Statistical Structure of the Dataset Using Only the Most Dominant Frequencies
Our theoretical understanding of the inner workings of general convolutional neural networks (CNN) is limited. We here present a new stepping stone towards such understanding in the form of a theory of learning in linear CNNs. By analyzing the gradient descent equations, we discover that using convolutions leads to a mismatch between the dataset structure and the network structure. We show that linear CNNs discover the statistical structure of the dataset with non-linear, stage-like transitions, and that the speed of discovery changes depending on this structural mismatch. Moreover, we find that the mismatch lies at the heart of what we call the 'dominant frequency bias', where linear CNNs arrive at these discoveries using only the dominant frequencies of the different structural parts present in the dataset. Our findings can help explain several characteristics of general CNNs, such as their shortcut learning and their tendency to rely on texture instead of shape.
Interpreting CNNs via Decision Trees
This paper aims to quantitatively explain rationales of each prediction that is made by a pre-trained convolutional neural network (CNN). We propose to learn a decision tree, which clarifies the specific reason for each prediction made by the CNN at the semantic level. I.e., the decision tree decomposes feature representations in high conv-layers of the CNN into elementary concepts of object parts. In this way, the decision tree tells people which object parts activate which filters for the prediction and how much they contribute to the prediction score. Such semantic and quantitative explanations for CNN predictions have specific values beyond the traditional pixel-level analysis of CNNs. More specifically, our method mines all potential decision modes of the CNN, where each mode represents a common case of how the CNN uses object parts for prediction. The decision tree organizes all potential decision modes in a coarse-to-fine manner to explain CNN predictions at different fine-grained levels. Experiments have demonstrated the effectiveness of the proposed method.
Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing
Vision transformers (ViTs) have significantly changed the computer vision landscape and have periodically exhibited superior performance in vision tasks compared to convolutional neural networks (CNNs). Although the jury is still out on which model type is superior, each has unique inductive biases that shape their learning and generalization performance. For example, ViTs have interesting properties with respect to early layer non-local feature dependence, as well as self-attention mechanisms which enhance learning flexibility, enabling them to ignore out-of-context image information more effectively. We hypothesize that this power to ignore out-of-context information (which we name patch selectivity), while integrating in-context information in a non-local manner in early layers, allows ViTs to more easily handle occlusion. In this study, our aim is to see whether we can have CNNs simulate this ability of patch selectivity by effectively hardwiring this inductive bias using Patch Mixing data augmentation, which consists of inserting patches from another image onto a training image and interpolating labels between the two image classes. Specifically, we use Patch Mixing to train state-of-the-art ViTs and CNNs, assessing its impact on their ability to ignore out-of-context patches and handle natural occlusions. We find that ViTs do not improve nor degrade when trained using Patch Mixing, but CNNs acquire new capabilities to ignore out-of-context information and improve on occlusion benchmarks, leaving us to conclude that this training method is a way of simulating in CNNs the abilities that ViTs already possess. We will release our Patch Mixing implementation and proposed datasets for public use. Project page: https://arielnlee.github.io/PatchMixing/
DAS: A Deformable Attention to Capture Salient Information in CNNs
Convolutional Neural Networks (CNNs) excel in local spatial pattern recognition. For many vision tasks, such as object recognition and segmentation, salient information is also present outside CNN's kernel boundaries. However, CNNs struggle in capturing such relevant information due to their confined receptive fields. Self-attention can improve a model's access to global information but increases computational overhead. We present a fast and simple fully convolutional method called DAS that helps focus attention on relevant information. It uses deformable convolutions for the location of pertinent image regions and separable convolutions for efficiency. DAS plugs into existing CNNs and propagates relevant information using a gating mechanism. Compared to the O(n^2) computational complexity of transformer-style attention, DAS is O(n). Our claim is that DAS's ability to pay increased attention to relevant features results in performance improvements when added to popular CNNs for Image Classification and Object Detection. For example, DAS yields an improvement on Stanford Dogs (4.47%), ImageNet (1.91%), and COCO AP (3.3%) with base ResNet50 backbone. This outperforms other CNN attention mechanisms while using similar or less FLOPs. Our code will be publicly available.
From Modern CNNs to Vision Transformers: Assessing the Performance, Robustness, and Classification Strategies of Deep Learning Models in Histopathology
While machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations. Further, we extended existing interpretability methods to previously unstudied models and systematically reveal insights of the models' classifications strategies that can be transferred to future model architectures.
Combining Transformers and CNNs for Efficient Object Detection in High-Resolution Satellite Imagery
We present GLOD, a transformer-first architecture for object detection in high-resolution satellite imagery. GLOD replaces CNN backbones with a Swin Transformer for end-to-end feature extraction, combined with novel UpConvMixer blocks for robust upsampling and Fusion Blocks for multi-scale feature integration. Our approach achieves 32.95\% on xView, outperforming SOTA methods by 11.46\%. Key innovations include asymmetric fusion with CBAM attention and a multi-path head design capturing objects across scales. The architecture is optimized for satellite imagery challenges, leveraging spatial priors while maintaining computational efficiency.
DeBUGCN -- Detecting Backdoors in CNNs Using Graph Convolutional Networks
Deep neural networks (DNNs) are becoming commonplace in critical applications, making their susceptibility to backdoor (trojan) attacks a significant problem. In this paper, we introduce a novel backdoor attack detection pipeline, detecting attacked models using graph convolution networks (DeBUGCN). To the best of our knowledge, ours is the first use of GCNs for trojan detection. We use the static weights of a DNN to create a graph structure of its layers. A GCN is then used as a binary classifier on these graphs, yielding a trojan or clean determination for the DNN. To demonstrate the efficacy of our pipeline, we train hundreds of clean and trojaned CNN models on the MNIST handwritten digits and CIFAR-10 image datasets, and show the DNN classification results using DeBUGCN. For a true In-the-Wild use case, our pipeline is evaluated on the TrojAI dataset which consists of various CNN architectures, thus showing the robustness and model-agnostic behaviour of DeBUGCN. Furthermore, on comparing our results on several datasets with state-of-the-art trojan detection algorithms, DeBUGCN is faster and more accurate.
CNNtention: Can CNNs do better with Attention?
Convolutional Neural Networks (CNNs) have been the standard for image classification tasks for a long time, but more recently attention-based mechanisms have gained traction. This project aims to compare traditional CNNs with attention-augmented CNNs across an image classification task. By evaluating and comparing their performance, accuracy and computational efficiency, the project will highlight benefits and trade-off of the localized feature extraction of traditional CNNs and the global context capture in attention-augmented CNNs. By doing this, we can reveal further insights into their respective strengths and weaknesses, guide the selection of models based on specific application needs and ultimately, enhance understanding of these architectures in the deep learning community. This was our final project for CS7643 Deep Learning course at Georgia Tech.
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
It has previously been reported that the representation that is learned in the first layer of deep Convolutional Neural Networks (CNNs) is highly consistent across initializations and architectures. In this work, we quantify this consistency by considering the first layer as a filter bank and measuring its energy distribution. We find that the energy distribution is very different from that of the initial weights and is remarkably consistent across random initializations, datasets, architectures and even when the CNNs are trained with random labels. In order to explain this consistency, we derive an analytical formula for the energy profile of linear CNNs and show that this profile is mostly dictated by the second order statistics of image patches in the training set and it will approach a whitening transformation when the number of iterations goes to infinity. Finally, we show that this formula for linear CNNs also gives an excellent fit for the energy profiles learned by commonly used nonlinear CNNs such as ResNet and VGG, and that the first layer of these CNNs indeed perform approximate whitening of their inputs.
Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network
Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality. Unfortunately, there is a performance drop when assessing the distortion images generated by generative adversarial network (GAN) with seemingly realistic texture. In this work, we conjecture that this maladaptation lies in the backbone of IQA models, where patch-level prediction methods use independent image patches as input to calculate their scores separately, but lack spatial relationship modeling among image patches. Therefore, we propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a vision transformer (ViT) branch and a convolutional neural network (CNN) branch for feature extraction. The hybrid architecture combines interaction information among image patches captured by ViT and local texture details from CNN. To make the features from shallow CNN more focused on the visually salient region, a deformable convolution is applied with the help of semantic information from the ViT branch. Finally, we use a patch-wise score prediction module to obtain the final score. The experiments show that our model outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual Image Quality Assessment Challenge.
Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56
Rotation Equivariant CNNs for Digital Pathology
We propose a new model for digital pathology segmentation, based on the observation that histopathology images are inherently symmetric under rotation and reflection. Utilizing recent findings on rotation equivariant CNNs, the proposed model leverages these symmetries in a principled manner. We present a visual analysis showing improved stability on predictions, and demonstrate that exploiting rotation equivariance significantly improves tumor detection performance on a challenging lymph node metastases dataset. We further present a novel derived dataset to enable principled comparison of machine learning models, in combination with an initial benchmark. Through this dataset, the task of histopathology diagnosis becomes accessible as a challenging benchmark for fundamental machine learning research.
Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\%) and SUN397 (72.0\%). We release the code and models at~https://github.com/wanglimin/MRCNN-Scene-Recognition.
Signal-Based Malware Classification Using 1D CNNs
Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.
LAPP: Layer Adaptive Progressive Pruning for Compressing CNNs from Scratch
Structured pruning is a commonly used convolutional neural network (CNN) compression approach. Pruning rate setting is a fundamental problem in structured pruning. Most existing works introduce too many additional learnable parameters to assign different pruning rates across different layers in CNN or cannot control the compression rate explicitly. Since too narrow network blocks information flow for training, automatic pruning rate setting cannot explore a high pruning rate for a specific layer. To overcome these limitations, we propose a novel framework named Layer Adaptive Progressive Pruning (LAPP), which gradually compresses the network during initial training of a few epochs from scratch. In particular, LAPP designs an effective and efficient pruning strategy that introduces a learnable threshold for each layer and FLOPs constraints for network. Guided by both task loss and FLOPs constraints, the learnable thresholds are dynamically and gradually updated to accommodate changes of importance scores during training. Therefore the pruning strategy can gradually prune the network and automatically determine the appropriate pruning rates for each layer. What's more, in order to maintain the expressive power of the pruned layer, before training starts, we introduce an additional lightweight bypass for each convolutional layer to be pruned, which only adds relatively few additional burdens. Our method demonstrates superior performance gains over previous compression methods on various datasets and backbone architectures. For example, on CIFAR-10, our method compresses ResNet-20 to 40.3% without accuracy drop. 55.6% of FLOPs of ResNet-18 are reduced with 0.21% top-1 accuracy increase and 0.40% top-5 accuracy increase on ImageNet.
Reducing Inference Energy Consumption Using Dual Complementary CNNs
Energy efficiency of Convolutional Neural Networks (CNNs) has become an important area of research, with various strategies being developed to minimize the power consumption of these models. Previous efforts, including techniques like model pruning, quantization, and hardware optimization, have made significant strides in this direction. However, there remains a need for more effective on device AI solutions that balance energy efficiency with model performance. In this paper, we propose a novel approach to reduce the energy requirements of inference of CNNs. Our methodology employs two small Complementary CNNs that collaborate with each other by covering each other's "weaknesses" in predictions. If the confidence for a prediction of the first CNN is considered low, the second CNN is invoked with the aim of producing a higher confidence prediction. This dual-CNN setup significantly reduces energy consumption compared to using a single large deep CNN. Additionally, we propose a memory component that retains previous classifications for identical inputs, bypassing the need to re-invoke the CNNs for the same input, further saving energy. Our experiments on a Jetson Nano computer demonstrate an energy reduction of up to 85.8% achieved on modified datasets where each sample was duplicated once. These findings indicate that leveraging a complementary CNN pair along with a memory component effectively reduces inference energy while maintaining high accuracy.
Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs
Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of k patches, each of dimension d, and the label is determined by a d-sparse signal vector that can freely appear in any one of the k patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require O(k+d) samples, whereas LCNs require Omega(kd) samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need O(k(k+d)) samples, compared to Omega(k^2d) samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.
Foveated Retinotopy Improves Classification and Localization in CNNs
From a falcon detecting prey to humans recognizing faces, many species exhibit extraordinary abilities in rapid visual localization and classification. These are made possible by a specialized retinal region called the fovea, which provides high acuity at the center of vision while maintaining lower resolution in the periphery. This distinctive spatial organization, preserved along the early visual pathway through retinotopic mapping, is fundamental to biological vision, yet remains largely unexplored in machine learning. Our study investigates how incorporating foveated retinotopy may benefit deep convolutional neural networks (CNNs) in image classification tasks. By implementing a foveated retinotopic transformation in the input layer of standard ResNet models and re-training them, we maintain comparable classification accuracy while enhancing the network's robustness to scale and rotational perturbations. Although this architectural modification introduces increased sensitivity to fixation point shifts, we demonstrate how this apparent limitation becomes advantageous: variations in classification probabilities across different gaze positions serve as effective indicators for object localization. Our findings suggest that foveated retinotopic mapping encodes implicit knowledge about visual object geometry, offering an efficient solution to the visual search problem - a capability crucial for many living species.
Robust Principles: Architectural Design Principles for Adversarially Robust CNNs
Our research aims to unify existing works' diverging opinions on how architectural components affect the adversarial robustness of CNNs. To accomplish our goal, we synthesize a suite of three generalizable robust architectural design principles: (a) optimal range for depth and width configurations, (b) preferring convolutional over patchify stem stage, and (c) robust residual block design through adopting squeeze and excitation blocks and non-parametric smooth activation functions. Through extensive experiments across a wide spectrum of dataset scales, adversarial training methods, model parameters, and network design spaces, our principles consistently and markedly improve AutoAttack accuracy: 1-3 percentage points (pp) on CIFAR-10 and CIFAR-100, and 4-9 pp on ImageNet. The code is publicly available at https://github.com/poloclub/robust-principles.
UFO: A unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations for CNNs
Concept-based explanations for convolutional neural networks (CNNs) aim to explain model behavior and outputs using a pre-defined set of semantic concepts (e.g., the model recognizes scene class ``bedroom'' based on the presence of concepts ``bed'' and ``pillow''). However, they often do not faithfully (i.e., accurately) characterize the model's behavior and can be too complex for people to understand. Further, little is known about how faithful and understandable different explanation methods are, and how to control these two properties. In this work, we propose UFO, a unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations. UFO formalizes understandability and faithfulness as mathematical objectives and unifies most existing concept-based explanations methods for CNNs. Using UFO, we systematically investigate how explanations change as we turn the knobs of faithfulness and understandability. Our experiments demonstrate a faithfulness-vs-understandability tradeoff: increasing understandability reduces faithfulness. We also provide insights into the ``disagreement problem'' in explainable machine learning, by analyzing when and how concept-based explanations disagree with each other.
How explainable are adversarially-robust CNNs?
Three important criteria of existing convolutional neural networks (CNNs) are (1) test-set accuracy; (2) out-of-distribution accuracy; and (3) explainability. While these criteria have been studied independently, their relationship is unknown. For example, do CNNs that have a stronger out-of-distribution performance have also stronger explainability? Furthermore, most prior feature-importance studies only evaluate methods on 2-3 common vanilla ImageNet-trained CNNs, leaving it unknown how these methods generalize to CNNs of other architectures and training algorithms. Here, we perform the first, large-scale evaluation of the relations of the three criteria using 9 feature-importance methods and 12 ImageNet-trained CNNs that are of 3 training algorithms and 5 CNN architectures. We find several important insights and recommendations for ML practitioners. First, adversarially robust CNNs have a higher explainability score on gradient-based attribution methods (but not CAM-based or perturbation-based methods). Second, AdvProp models, despite being highly accurate more than both vanilla and robust models alone, are not superior in explainability. Third, among 9 feature attribution methods tested, GradCAM and RISE are consistently the best methods. Fourth, Insertion and Deletion are biased towards vanilla and robust models respectively, due to their strong correlation with the confidence score distributions of a CNN. Fifth, we did not find a single CNN to be the best in all three criteria, which interestingly suggests that CNNs are harder to interpret as they become more accurate.
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few large convolutional kernels instead of a stack of small kernels could be a more powerful paradigm. We suggested five guidelines, e.g., applying re-parameterized large depth-wise convolutions, to design efficient high-performance large-kernel CNNs. Following the guidelines, we propose RepLKNet, a pure CNN architecture whose kernel size is as large as 31x31, in contrast to commonly used 3x3. RepLKNet greatly closes the performance gap between CNNs and ViTs, e.g., achieving comparable or superior results than Swin Transformer on ImageNet and a few typical downstream tasks, with lower latency. RepLKNet also shows nice scalability to big data and large models, obtaining 87.8% top-1 accuracy on ImageNet and 56.0% mIoU on ADE20K, which is very competitive among the state-of-the-arts with similar model sizes. Our study further reveals that, in contrast to small-kernel CNNs, large-kernel CNNs have much larger effective receptive fields and higher shape bias rather than texture bias. Code & models at https://github.com/megvii-research/RepLKNet.
A precortical module for robust CNNs to light variations
We present a simple mathematical model for the mammalian low visual pathway, taking into account its key elements: retina, lateral geniculate nucleus (LGN), primary visual cortex (V1). The analogies between the cortical level of the visual system and the structure of popular CNNs, used in image classification tasks, suggests the introduction of an additional preliminary convolutional module inspired to precortical neuronal circuits to improve robustness with respect to global light intensity and contrast variations in the input images. We validate our hypothesis on the popular databases MNIST, FashionMNIST and SVHN, obtaining significantly more robust CNNs with respect to these variations, once such extra module is added.
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
We use Bayesian convolutional neural networks and a novel generative model of Galaxy Zoo volunteer responses to infer posteriors for the visual morphology of galaxies. Bayesian CNN can learn from galaxy images with uncertain labels and then, for previously unlabelled galaxies, predict the probability of each possible label. Our posteriors are well-calibrated (e.g. for predicting bars, we achieve coverage errors of 11.8% within a vote fraction deviation of 0.2) and hence are reliable for practical use. Further, using our posteriors, we apply the active learning strategy BALD to request volunteer responses for the subset of galaxies which, if labelled, would be most informative for training our network. We show that training our Bayesian CNNs using active learning requires up to 35-60% fewer labelled galaxies, depending on the morphological feature being classified. By combining human and machine intelligence, Galaxy Zoo will be able to classify surveys of any conceivable scale on a timescale of weeks, providing massive and detailed morphology catalogues to support research into galaxy evolution.
Performance-aware Approximation of Global Channel Pruning for Multitask CNNs
Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.
Drastically Reducing the Number of Trainable Parameters in Deep CNNs by Inter-layer Kernel-sharing
Deep convolutional neural networks (DCNNs) have become the state-of-the-art (SOTA) approach for many computer vision tasks: image classification, object detection, semantic segmentation, etc. However, most SOTA networks are too large for edge computing. Here, we suggest a simple way to reduce the number of trainable parameters and thus the memory footprint: sharing kernels between multiple convolutional layers. Kernel-sharing is only possible between ``isomorphic" layers, i.e.layers having the same kernel size, input and output channels. This is typically the case inside each stage of a DCNN. Our experiments on CIFAR-10 and CIFAR-100, using the ConvMixer and SE-ResNet architectures show that the number of parameters of these models can drastically be reduced with minimal cost on accuracy. The resulting networks are appealing for certain edge computing applications that are subject to severe memory constraints, and even more interesting if leveraging "frozen weights" hardware accelerators. Kernel-sharing is also an efficient regularization method, which can reduce overfitting. The codes are publicly available at https://github.com/AlirezaAzadbakht/kernel-sharing.
Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers
In this study, we introduce the Multi-Head Explainer (MHEX), a versatile and modular framework that enhances both the explainability and accuracy of Convolutional Neural Networks (CNNs) and Transformer-based models. MHEX consists of three core components: an Attention Gate that dynamically highlights task-relevant features, Deep Supervision that guides early layers to capture fine-grained details pertinent to the target class, and an Equivalent Matrix that unifies refined local and global representations to generate comprehensive saliency maps. Our approach demonstrates superior compatibility, enabling effortless integration into existing residual networks like ResNet and Transformer architectures such as BERT with minimal modifications. Extensive experiments on benchmark datasets in medical imaging and text classification show that MHEX not only improves classification accuracy but also produces highly interpretable and detailed saliency scores.
Structured Pruning is All You Need for Pruning CNNs at Initialization
Pruning is a popular technique for reducing the model size and computational cost of convolutional neural networks (CNNs). However, a slow retraining or fine-tuning procedure is often required to recover the accuracy loss caused by pruning. Recently, a new research direction on weight pruning, pruning-at-initialization (PAI), is proposed to directly prune CNNs before training so that fine-tuning or retraining can be avoided. While PAI has shown promising results in reducing the model size, existing approaches rely on fine-grained weight pruning which requires unstructured sparse matrix computation, making it difficult to achieve real speedup in practice unless the sparsity is very high. This work is the first to show that fine-grained weight pruning is in fact not necessary for PAI. Instead, the layerwise compression ratio is the main critical factor to determine the accuracy of a CNN model pruned at initialization. Based on this key observation, we propose PreCropping, a structured hardware-efficient model compression scheme. PreCropping directly compresses the model at the channel level following the layerwise compression ratio. Compared to weight pruning, the proposed scheme is regular and dense in both storage and computation without sacrificing accuracy. In addition, since PreCropping compresses CNNs at initialization, the computational and memory costs of CNNs are reduced for both training and inference on commodity hardware. We empirically demonstrate our approaches on several modern CNN architectures, including ResNet, ShuffleNet, and MobileNet for both CIFAR-10 and ImageNet.
Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of CNNs
To have a better understanding and usage of Convolution Neural Networks (CNNs), the visualization and interpretation of CNNs has attracted increasing attention in recent years. In particular, several Class Activation Mapping (CAM) methods have been proposed to discover the connection between CNN's decision and image regions. In spite of the reasonable visualization, lack of clear and sufficient theoretical support is the main limitation of these methods. In this paper, we introduce two axioms -- Conservation and Sensitivity -- to the visualization paradigm of the CAM methods. Meanwhile, a dedicated Axiom-based Grad-CAM (XGrad-CAM) is proposed to satisfy these axioms as much as possible. Experiments demonstrate that XGrad-CAM is an enhanced version of Grad-CAM in terms of conservation and sensitivity. It is able to achieve better visualization performance than Grad-CAM, while also be class-discriminative and easy-to-implement compared with Grad-CAM++ and Ablation-CAM. The code is available at https://github.com/Fu0511/XGrad-CAM.
The shape and simplicity biases of adversarially robust ImageNet-trained CNNs
Increasingly more similarities between human vision and convolutional neural networks (CNNs) have been revealed in the past few years. Yet, vanilla CNNs often fall short in generalizing to adversarial or out-of-distribution (OOD) examples which humans demonstrate superior performance. Adversarial training is a leading learning algorithm for improving the robustness of CNNs on adversarial and OOD data; however, little is known about the properties, specifically the shape bias and internal features learned inside adversarially-robust CNNs. In this paper, we perform a thorough, systematic study to understand the shape bias and some internal mechanisms that enable the generalizability of AlexNet, GoogLeNet, and ResNet-50 models trained via adversarial training. We find that while standard ImageNet classifiers have a strong texture bias, their R counterparts rely heavily on shapes. Remarkably, adversarial training induces three simplicity biases into hidden neurons in the process of "robustifying" CNNs. That is, each convolutional neuron in R networks often changes to detecting (1) pixel-wise smoother patterns, i.e., a mechanism that blocks high-frequency noise from passing through the network; (2) more lower-level features i.e. textures and colors (instead of objects);and (3) fewer types of inputs. Our findings reveal the interesting mechanisms that made networks more adversarially robust and also explain some recent findings e.g., why R networks benefit from a much larger capacity (Xie et al. 2020) and can act as a strong image prior in image synthesis (Santurkar et al. 2019).
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
State-of-the-art sequence labeling systems traditionally require large amounts of task-specific knowledge in the form of hand-crafted features and data pre-processing. In this paper, we introduce a novel neutral network architecture that benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM, CNN and CRF. Our system is truly end-to-end, requiring no feature engineering or data pre-processing, thus making it applicable to a wide range of sequence labeling tasks. We evaluate our system on two data sets for two sequence labeling tasks --- Penn Treebank WSJ corpus for part-of-speech (POS) tagging and CoNLL 2003 corpus for named entity recognition (NER). We obtain state-of-the-art performance on both the two data --- 97.55\% accuracy for POS tagging and 91.21\% F1 for NER.
Killing Two Birds with One Stone:Efficient and Robust Training of Face Recognition CNNs by Partial FC
Learning discriminative deep feature embeddings by using million-scale in-the-wild datasets and margin-based softmax loss is the current state-of-the-art approach for face recognition. However, the memory and computing cost of the Fully Connected (FC) layer linearly scales up to the number of identities in the training set. Besides, the large-scale training data inevitably suffers from inter-class conflict and long-tailed distribution. In this paper, we propose a sparsely updating variant of the FC layer, named Partial FC (PFC). In each iteration, positive class centers and a random subset of negative class centers are selected to compute the margin-based softmax loss. All class centers are still maintained throughout the whole training process, but only a subset is selected and updated in each iteration. Therefore, the computing requirement, the probability of inter-class conflict, and the frequency of passive update on tail class centers, are dramatically reduced. Extensive experiments across different training data and backbones (e.g. CNN and ViT) confirm the effectiveness, robustness and efficiency of the proposed PFC. The source code is available at \https://github.com/deepinsight/insightface/tree/master/recognition.
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
A wide variety of deep learning techniques from style transfer to multitask learning rely on training affine transformations of features. Most prominent among these is the popular feature normalization technique BatchNorm, which normalizes activations and then subsequently applies a learned affine transform. In this paper, we aim to understand the role and expressive power of affine parameters used to transform features in this way. To isolate the contribution of these parameters from that of the learned features they transform, we investigate the performance achieved when training only these parameters in BatchNorm and freezing all weights at their random initializations. Doing so leads to surprisingly high performance considering the significant limitations that this style of training imposes. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet, top-5) accuracy in this configuration, far higher than when training an equivalent number of randomly chosen parameters elsewhere in the network. BatchNorm achieves this performance in part by naturally learning to disable around a third of the random features. Not only do these results highlight the expressive power of affine parameters in deep learning, but - in a broader sense - they characterize the expressive power of neural networks constructed simply by shifting and rescaling random features.
Don't Think It Twice: Exploit Shift Invariance for Efficient Online Streaming Inference of CNNs
Deep learning time-series processing often relies on convolutional neural networks with overlapping windows. This overlap allows the network to produce an output faster than the window length. However, it introduces additional computations. This work explores the potential to optimize computational efficiency during inference by exploiting convolution's shift-invariance properties to skip the calculation of layer activations between successive overlapping windows. Although convolutions are shift-invariant, zero-padding and pooling operations, widely used in such networks, are not efficient and complicate efficient streaming inference. We introduce StreamiNNC, a strategy to deploy Convolutional Neural Networks for online streaming inference. We explore the adverse effects of zero padding and pooling on the accuracy of streaming inference, deriving theoretical error upper bounds for pooling during streaming. We address these limitations by proposing signal padding and pooling alignment and provide guidelines for designing and deploying models for StreamiNNC. We validate our method in simulated data and on three real-world biomedical signal processing applications. StreamiNNC achieves a low deviation between streaming output and normal inference for all three networks (2.03 - 3.55% NRMSE). This work demonstrates that it is possible to linearly speed up the inference of streaming CNNs processing overlapping windows, negating the additional computation typically incurred by overlapping windows.
Is a PET all you need? A multi-modal study for Alzheimer's disease using 3D CNNs
Alzheimer's Disease (AD) is the most common form of dementia and often difficult to diagnose due to the multifactorial etiology of dementia. Recent works on neuroimaging-based computer-aided diagnosis with deep neural networks (DNNs) showed that fusing structural magnetic resonance images (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) leads to improved accuracy in a study population of healthy controls and subjects with AD. However, this result conflicts with the established clinical knowledge that FDG-PET better captures AD-specific pathologies than sMRI. Therefore, we propose a framework for the systematic evaluation of multi-modal DNNs and critically re-evaluate single- and multi-modal DNNs based on FDG-PET and sMRI for binary healthy vs. AD, and three-way healthy/mild cognitive impairment/AD classification. Our experiments demonstrate that a single-modality network using FDG-PET performs better than MRI (accuracy 0.91 vs 0.87) and does not show improvement when combined. This conforms with the established clinical knowledge on AD biomarkers, but raises questions about the true benefit of multi-modal DNNs. We argue that future work on multi-modal fusion should systematically assess the contribution of individual modalities following our proposed evaluation framework. Finally, we encourage the community to go beyond healthy vs. AD classification and focus on differential diagnosis of dementia, where fusing multi-modal image information conforms with a clinical need.