- FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured Game State Information Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural language interactions between players and hidden state information. Recent work has shown that large language models (LLMs) that have access to state information can generate higher quality game turns than LLMs that use dialog history alone. However, previous work used game state information that was heuristically created and was not a true gold standard game state. We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D&D gameplay on Discord with true game state info. We recorded game play sessions of players who used the Avrae bot, which was developed to aid people in playing D&D online, capturing language, game commands and underlying game state information. We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information, improving both automated metrics and human judgments of quality. Additionally, we show that LLMs can generate executable Avrae commands, particularly after finetuning. 5 authors · May 2, 2023
- First Steps Towards Overhearing LLM Agents: A Case Study With Dungeons & Dragons Gameplay Much work has been done on conversational LLM agents which directly assist human users with tasks. We present an alternative paradigm for interacting with LLM agents, which we call "overhearing agents". These overhearing agents do not actively participate in conversation -- instead, they "listen in" on human-to-human conversations and perform background tasks or provide suggestions to assist the user. In this work, we explore the overhearing agents paradigm through the lens of Dungeons & Dragons gameplay. We present an in-depth study using large multimodal audio-language models as overhearing agents to assist a Dungeon Master. We perform a human evaluation to examine the helpfulness of such agents and find that some large audio-language models have the emergent ability to perform overhearing agent tasks using implicit audio cues. Finally, we release Python libraries and our project code to support further research into the overhearing agents paradigm at https://github.com/zhudotexe/overhearing_agents. 3 authors · May 28
- CALYPSO: LLMs as Dungeon Masters' Assistants The role of a Dungeon Master, or DM, in the game Dungeons & Dragons is to perform multiple tasks simultaneously. The DM must digest information about the game setting and monsters, synthesize scenes to present to other players, and respond to the players' interactions with the scene. Doing all of these tasks while maintaining consistency within the narrative and story world is no small feat of human cognition, making the task tiring and unapproachable to new players. Large language models (LLMs) like GPT-3 and ChatGPT have shown remarkable abilities to generate coherent natural language text. In this paper, we conduct a formative evaluation with DMs to establish the use cases of LLMs in D&D and tabletop gaming generally. We introduce CALYPSO, a system of LLM-powered interfaces that support DMs with information and inspiration specific to their own scenario. CALYPSO distills game context into bite-sized prose and helps brainstorm ideas without distracting the DM from the game. When given access to CALYPSO, DMs reported that it generated high-fidelity text suitable for direct presentation to players, and low-fidelity ideas that the DM could develop further while maintaining their creative agency. We see CALYPSO as exemplifying a paradigm of AI-augmented tools that provide synchronous creative assistance within established game worlds, and tabletop gaming more broadly. 4 authors · Aug 14, 2023
1 Static Vs. Agentic Game Master AI for Facilitating Solo Role-Playing Experiences This paper presents a game master AI for single-player role-playing games. The AI is designed to deliver interactive text-based narratives and experiences typically associated with multiplayer tabletop games like Dungeons & Dragons. We report on the design process and the series of experiments to improve the functionality and experience design, resulting in two functional versions of the system. While v1 of our system uses simplified prompt engineering, v2 leverages a multi-agent architecture and the ReAct framework to include reasoning and action. A comparative evaluation demonstrates that v2 as an agentic system maintains play while significantly improving modularity and game experience, including immersion and curiosity. Our findings contribute to the evolution of AI-driven interactive fiction, highlighting new avenues for enhancing solo role-playing experiences. 5 authors · Feb 26
- I Cast Detect Thoughts: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons We propose a novel task, G4C, to study teacher-student natural language interactions in a goal-driven and grounded environment. Dungeons and Dragons (D&D), a role-playing game, provides an ideal setting to investigate such interactions. Here, the Dungeon Master (DM), i.e., the teacher, guides the actions of several players -- students, each with their own personas and abilities -- to achieve shared goals grounded in a fantasy world. Our approach is to decompose and model these interactions into (1) the DM's intent to guide players toward a given goal; (2) the DM's guidance utterance to the players expressing this intent; and (3) a theory-of-mind (ToM) model that anticipates the players' reaction to the guidance one turn into the future. We develop a novel reinforcement learning (RL) method for training a DM that generates guidance for players by rewarding utterances where the intent matches the ToM-anticipated player actions. Human and automated evaluations show that a DM trained to explicitly model intents and incorporate ToM of the players using RL generates better-quality guidance that is 3x more likely to fulfill the DM's intent than a vanilla natural language generation (NLG) approach. 8 authors · Dec 20, 2022