- On Signs of eigenvalues of Modular forms satisfying Ramanujan Conjecture Let F in S_{k_1}(Gamma^{(2)}(N_1)) and G in S_{k_2}(Gamma^{(2)}(N_2)) be two Siegel cusp forms over the congruence subgroups Gamma^{(2)}(N_1) and Gamma^{(2)}(N_2) respectively. Assume that they are Hecke eigenforms in different eigenspaces and satisfy the Generalized Ramanujan Conjecture. Let lambda_F(p) denote the eigenvalue of F with respect to the Hecke operator T(p). In this article, we compute a lower bound for the density of the set of primes, { p : lambda_F(p) lambda_G(p) < 0 }. 1 authors · Dec 12, 2024
- Flat matrix models for quantum permutation groups We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful. 2 authors · Feb 14, 2016
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- New infinite families in the stable homotopy groups of spheres We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems. 3 authors · Apr 15, 2024
- On the Stability of Expressive Positional Encodings for Graph Neural Networks Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods. 7 authors · Oct 4, 2023
- Generating functions for some series of characters of classical Lie groups There exist a number of well known multiplicative generating functions for series of Schur functions. Amongst these are some related to the dual Cauchy identity whose expansion coefficients are rather simple, and in some cases periodic in parameters specifying the Schur functions. More recently similar identities have been found involving expansions in terms of characters of the symplectic group. Here these results are extended and generalised to all classical Lie groups. This is done through the derivation of explicit recurrence relations for the expansion coefficients based on the action of the Weyl groups of both the symplectic and orthogonal groups. Copious results are tabulated in the form of explicit values of the expansion coefficients as functions of highest weight parameters. An alternative approach is then based on dual pairs of symplectic and/or orthogonal groups. A byproduct of this approach is that expansions in terms of spin orthogonal group characters can always be recovered from non-spin cases. 1 authors · Mar 1, 2023
- An addendum on the Mathieu Conjecture for SU(N), Sp(N) and G_2 In this paper, we sharpen results obtained by the author in 2023. The new results reduce the Mathieu Conjecture on SU(N) (formulated for all compact connected Lie groups by O. Mathieu in 1997) to a conjecture involving only functions on R^ntimes (S^1)^m with n,m non-negative integers instead of involving functions on R^ntimes (S^1setminus{1})^m. The proofs rely on a more recent work of the author (2024) and a specific KAK decomposition. Finally, with these results we can also improve the results on the groups Sp(N) and G_2 in the latter paper, since they relied on the construction introduced in the 2023 paper. 1 authors · Apr 2
- Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight Ap\'{e}ry-type (inverse) binomial series have appeared prominently in the calculations of Feynman integrals in recent years. In our previous work, we showed that a few large classes of the non-alternating Ap\'ery-type (inverse) central binomial series can be evaluated using colored multiple zeta values of level four (i.e., special values of multiple polylogarithms at fourth roots of unity) by expressing them in terms of iterated integrals. In this sequel, we shall prove that for several classes of the alternating versions we need to raise the level to eight. Our main idea is to adopt hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the non-alternating setting. 2 authors · May 2, 2022
- Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups We compute the elliptic genera of two-dimensional N=(2,2) and N=(0,2) gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi-Yau, N=(2,2) SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2) model. 4 authors · May 2, 2013
- On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p. 4 authors · Jun 28, 2021
- Automorphisms and subdivisions of Helly graphs We study Helly graphs of finite combinatorial dimension, i.e. whose injective hull is finite-dimensional. We describe very simple fine simplicial subdivisions of the injective hull of a Helly graph, following work of Lang. We also give a very explicit simplicial model of the injective hull of a Helly graphs, in terms of cliques which are intersections of balls. We use these subdivisions to prove that any automorphism of a Helly graph with finite combinatorial dimension is either elliptic or hyperbolic. Moreover, every such hyperbolic automorphism has an axis in an appropriate Helly subdivision, and its translation length is rational with uniformly bounded denominator. 1 authors · Jul 1, 2023
- A Unified Perspective on Orthogonalization and Diagonalization This paper makes a formal connection between two families of widely used matrix factorization algorithms in numerical linear algebra. One family consists of the Jacobi eigenvalue algorithm and its variants for computing the Hermitian eigendecomposition and singular value decomposition. The other consists of Gaussian elimination and the Gram-Schmidt procedure with various pivoting rules for computing the Cholesky decomposition and QR decomposition respectively. Both families are cast as special cases of a more general class of factorization algorithms. We provide a randomized pivoting rule that applies to this general class (which differs substantially from the usual pivoting rules for Gaussian elimination / Gram-Schmidt) which results in the same linear rate of convergence for each algorithm, irrespective of which factorization it computes. A second important consequence of this randomized pivoting rule is a provable, effective bound on the numerical stability of the Jacobi eigenvalue algorithm, which addresses a longstanding open problem of Demmel and Veseli\'c `92. 2 authors · May 4
- On Loewner energy and curve composition The composition gamma circ eta of Jordan curves gamma and eta in universal Teichm\"uller space is defined through the composition h_gamma circ h_eta of their conformal weldings. We show that whenever gamma and eta are curves of finite Loewner energy I^L, the energy of the composition satisfies $I^L(gamma circ eta) lesssim_K I^L(gamma) + I^L(eta), with an explicit constant in terms of the quasiconformal K of \gamma and \eta. We also study the asymptotic growth rate of the Loewner energy under n self-compositions \gamma^n := \gamma \circ \cdots \circ \gamma, showing limsup_{n rightarrow infty} 1{n}log I^L(gamma^n) lesssim_K 1, again with explicit constant. Our approach is to define a new conformally-covariant rooted welding functional W_h(y), and show W_h(y) \asymp_K I^L(\gamma) when h is a welding of \gamma and y is any root (a point in the domain of h). In the course of our arguments we also give several new expressions for the Loewner energy, including generalized formulas in terms of the Riemann maps f and g for \gamma which hold irrespective of the placement of \gamma on the Riemann sphere, the normalization of f and g, and what disks D, D^c \subset \mathbb{C} serve as domains. An additional corollary is that I^L(\gamma) is bounded above by a constant only depending on the Weil--Petersson distance from \gamma$ to the circle. 2 authors · May 6
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12
- Concavity Properties of Solutions of Elliptic Equations under Conformal Deformations We study the Dirichlet problem for the weighted Schr\"odinger operator \[-\Delta u +Vu = \lambda \rho u,\] where rho is a positive weighting function and V is a potential. Such equations appear naturally in conformal geometry and in the composite membrane problem. Our primary goal is to establish concavity estimates for the principle eigenfunction with respect to conformal connections. Doing so, we obtain new bounds on the fundamental gap problem, which is the difference between the first and second eigenvalues. In particular, we partially resolve a conjecture of Nguyen, Stancu and Wei [IMRN 2022] on the fundamental gap of horoconvex domains. In addition, we obtain a power convexity estimate for solutions to the torsion problem in spherical geometry on convex domains which are not too large. 3 authors · Mar 5, 2024
- Linear algebra with transformers Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true. 1 authors · Dec 3, 2021
- Relative Oscillation Theory for Jacobi Matrices Extended We present a comprehensive treatment of relative oscillation theory for finite Jacobi matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions of the two underlying difference equations. Until now only the case of perturbations of the main diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)open and closed spectral intervals, simplify the proof, and establish the comparison theorem. 1 authors · Jul 16, 2012
- Principal Landau Determinants We reformulate the Landau analysis of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations. We contribute new algorithms for computing Landau singularities, using tools from polyhedral geometry and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram. We illustrate with a number of examples that this algebraic formalism allows to compute many components of the Landau singular locus. We adapt the GKZ framework by carefully specializing Euler integrals to Feynman integrals. For instance, ultraviolet and infrared singularities are detected as irreducible components of an incidence variety, which project dominantly to the kinematic space. We compute principal Landau determinants for the infinite families of one-loop and banana diagrams with different mass configurations, and for a range of cutting-edge Standard Model processes. Our algorithms build on the Julia package Landau.jl and are implemented in the new open-source package PLD.jl available at https://mathrepo.mis.mpg.de/PLD/. 3 authors · Nov 27, 2023
1 Flagfolds By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all d--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes. 2 authors · May 17, 2023