- Audio-to-Score Conversion Model Based on Whisper methodology This thesis develops a Transformer model based on Whisper, which extracts melodies and chords from music audio and records them into ABC notation. A comprehensive data processing workflow is customized for ABC notation, including data cleansing, formatting, and conversion, and a mutation mechanism is implemented to increase the diversity and quality of training data. This thesis innovatively introduces the "Orpheus' Score", a custom notation system that converts music information into tokens, designs a custom vocabulary library, and trains a corresponding custom tokenizer. Experiments show that compared to traditional algorithms, the model has significantly improved accuracy and performance. While providing a convenient audio-to-score tool for music enthusiasts, this work also provides new ideas and tools for research in music information processing. 2 authors · Oct 22, 2024
- MusicScore: A Dataset for Music Score Modeling and Generation Music scores are written representations of music and contain rich information about musical components. The visual information on music scores includes notes, rests, staff lines, clefs, dynamics, and articulations. This visual information in music scores contains more semantic information than audio and symbolic representations of music. Previous music score datasets have limited sizes and are mainly designed for optical music recognition (OMR). There is a lack of research on creating a large-scale benchmark dataset for music modeling and generation. In this work, we propose MusicScore, a large-scale music score dataset collected and processed from the International Music Score Library Project (IMSLP). MusicScore consists of image-text pairs, where the image is a page of a music score and the text is the metadata of the music. The metadata of MusicScore is extracted from the general information section of the IMSLP pages. The metadata includes rich information about the composer, instrument, piece style, and genre of the music pieces. MusicScore is curated into small, medium, and large scales of 400, 14k, and 200k image-text pairs with varying diversity, respectively. We build a score generation system based on a UNet diffusion model to generate visually readable music scores conditioned on text descriptions to benchmark the MusicScore dataset for music score generation. MusicScore is released to the public at https://huggingface.co/datasets/ZheqiDAI/MusicScore. 3 authors · Jun 17, 2024
- Predicting performance difficulty from piano sheet music images Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility. 4 authors · Sep 28, 2023
- Sheet Music Transformer: End-To-End Optical Music Recognition Beyond Monophonic Transcription State-of-the-art end-to-end Optical Music Recognition (OMR) has, to date, primarily been carried out using monophonic transcription techniques to handle complex score layouts, such as polyphony, often by resorting to simplifications or specific adaptations. Despite their efficacy, these approaches imply challenges related to scalability and limitations. This paper presents the Sheet Music Transformer, the first end-to-end OMR model designed to transcribe complex musical scores without relying solely on monophonic strategies. Our model employs a Transformer-based image-to-sequence framework that predicts score transcriptions in a standard digital music encoding format from input images. Our model has been tested on two polyphonic music datasets and has proven capable of handling these intricate music structures effectively. The experimental outcomes not only indicate the competence of the model, but also show that it is better than the state-of-the-art methods, thus contributing to advancements in end-to-end OMR transcription. 3 authors · Feb 12, 2024
- Sheet Music Transformer ++: End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music Optical Music Recognition is a field that has progressed significantly, bringing accurate systems that transcribe effectively music scores into digital formats. Despite this, there are still several limitations that hinder OMR from achieving its full potential. Specifically, state of the art OMR still depends on multi-stage pipelines for performing full-page transcription, as well as it has only been demonstrated in monophonic cases, leaving behind very relevant engravings. In this work, we present the Sheet Music Transformer++, an end-to-end model that is able to transcribe full-page polyphonic music scores without the need of a previous Layout Analysis step. This is done thanks to an extensive curriculum learning-based pretraining with synthetic data generation. We conduct several experiments on a full-page extension of a public polyphonic transcription dataset. The experimental outcomes confirm that the model is competent at transcribing full-page pianoform scores, marking a noteworthy milestone in end-to-end OMR transcription. 4 authors · May 20, 2024
- PBSCSR: The Piano Bootleg Score Composer Style Recognition Dataset This article motivates, describes, and presents the PBSCSR dataset for studying composer style recognition of piano sheet music. Our overarching goal was to create a dataset for studying composer style recognition that is "as accessible as MNIST and as challenging as ImageNet." To achieve this goal, we sample fixed-length bootleg score fragments from piano sheet music images on IMSLP. The dataset itself contains 40,000 62x64 bootleg score images for a 9-way classification task, 100,000 62x64 bootleg score images for a 100-way classification task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. Additionally, we include relevant metadata to allow access to the underlying raw sheet music images and other related data on IMSLP. We describe several research tasks that could be studied with the dataset, including variations of composer style recognition in a few-shot or zero-shot setting. For tasks that have previously proposed models, we release code and baseline results for future works to compare against. We also discuss open research questions that the PBSCSR data is especially well suited to facilitate research on and areas of fruitful exploration in future work. 3 authors · Jan 30, 2024