1 Quantum-PEFT: Ultra parameter-efficient fine-tuning This paper introduces Quantum-PEFT that leverages quantum computations for parameter-efficient fine-tuning (PEFT). Unlike other additive PEFT methods, such as low-rank adaptation (LoRA), Quantum-PEFT exploits an underlying full-rank yet surprisingly parameter efficient quantum unitary parameterization. With the use of Pauli parameterization, the number of trainable parameters grows only logarithmically with the ambient dimension, as opposed to linearly as in LoRA-based PEFT methods. Quantum-PEFT achieves vanishingly smaller number of trainable parameters than the lowest-rank LoRA as dimensions grow, enhancing parameter efficiency while maintaining a competitive performance. We apply Quantum-PEFT to several transfer learning benchmarks in language and vision, demonstrating significant advantages in parameter efficiency. 6 authors · Mar 7 1
- How Can Quantum Deep Learning Improve Large Language Models? The rapid progress of large language models (LLMs) has transformed natural language processing, yet the challenge of efficient adaptation remains unresolved. Full fine-tuning achieves strong performance but imposes prohibitive computational and memory costs. Parameter-efficient fine-tuning (PEFT) strategies, such as low-rank adaptation (LoRA), Prefix tuning, and sparse low-rank adaptation (SoRA), address this issue by reducing trainable parameters while maintaining competitive accuracy. However, these methods often encounter limitations in scalability, stability, and generalization across diverse tasks. Recent advances in quantum deep learning introduce novel opportunities through quantum-inspired encoding and parameterized quantum circuits (PQCs). In particular, the quantum-amplitude embedded adaptation (QAA) framework demonstrates expressive model updates with minimal overhead. This paper presents a systematic survey and comparative analysis of conventional PEFT methods and QAA. The analysis demonstrates trade-offs in convergence, efficiency, and representational capacity, while providing insight into the potential of quantum approaches for future LLM adaptation. 5 authors · Sep 17