new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 27

BERSting at the Screams: A Benchmark for Distanced, Emotional and Shouted Speech Recognition

Some speech recognition tasks, such as automatic speech recognition (ASR), are approaching or have reached human performance in many reported metrics. Yet, they continue to struggle in complex, real-world, situations, such as with distanced speech. Previous challenges have released datasets to address the issue of distanced ASR, however, the focus remains primarily on distance, specifically relying on multi-microphone array systems. Here we present the B(asic) E(motion) R(andom phrase) S(hou)t(s) (BERSt) dataset. The dataset contains almost 4 hours of English speech from 98 actors with varying regional and non-native accents. The data was collected on smartphones in the actors homes and therefore includes at least 98 different acoustic environments. The data also includes 7 different emotion prompts and both shouted and spoken utterances. The smartphones were places in 19 different positions, including obstructions and being in a different room than the actor. This data is publicly available for use and can be used to evaluate a variety of speech recognition tasks, including: ASR, shout detection, and speech emotion recognition (SER). We provide initial benchmarks for ASR and SER tasks, and find that ASR degrades both with an increase in distance and shout level and shows varied performance depending on the intended emotion. Our results show that the BERSt dataset is challenging for both ASR and SER tasks and continued work is needed to improve the robustness of such systems for more accurate real-world use.

Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy

This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years.