Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWhisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers
In this paper, we focus on Whisper, a recent automatic speech recognition model trained with a massive 680k hour labeled speech corpus recorded in diverse conditions. We first show an interesting finding that while Whisper is very robust against real-world background sounds (e.g., music), its audio representation is actually not noise-invariant, but is instead highly correlated to non-speech sounds, indicating that Whisper recognizes speech conditioned on the noise type. With this finding, we build a unified audio tagging and speech recognition model Whisper-AT by freezing the backbone of Whisper, and training a lightweight audio tagging model on top of it. With <1% extra computational cost, Whisper-AT can recognize audio events, in addition to spoken text, in a single forward pass.
ICSD: An Open-source Dataset for Infant Cry and Snoring Detection
The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research.
Event Camera Demosaicing via Swin Transformer and Pixel-focus Loss
Recent research has highlighted improvements in high-quality imaging guided by event cameras, with most of these efforts concentrating on the RGB domain. However, these advancements frequently neglect the unique challenges introduced by the inherent flaws in the sensor design of event cameras in the RAW domain. Specifically, this sensor design results in the partial loss of pixel values, posing new challenges for RAW domain processes like demosaicing. The challenge intensifies as most research in the RAW domain is based on the premise that each pixel contains a value, making the straightforward adaptation of these methods to event camera demosaicing problematic. To end this, we present a Swin-Transformer-based backbone and a pixel-focus loss function for demosaicing with missing pixel values in RAW domain processing. Our core motivation is to refine a general and widely applicable foundational model from the RGB domain for RAW domain processing, thereby broadening the model's applicability within the entire imaging process. Our method harnesses multi-scale processing and space-to-depth techniques to ensure efficiency and reduce computing complexity. We also proposed the Pixel-focus Loss function for network fine-tuning to improve network convergence based on our discovery of a long-tailed distribution in training loss. Our method has undergone validation on the MIPI Demosaic Challenge dataset, with subsequent analytical experimentation confirming its efficacy. All code and trained models are released here: https://github.com/yunfanLu/ev-demosaic
Multilingual Event Linking to Wikidata
We present a task of multilingual linking of events to a knowledge base. We automatically compile a large-scale dataset for this task, comprising of 1.8M mentions across 44 languages referring to over 10.9K events from Wikidata. We propose two variants of the event linking task: 1) multilingual, where event descriptions are from the same language as the mention, and 2) crosslingual, where all event descriptions are in English. On the two proposed tasks, we compare multiple event linking systems including BM25+ (Lv and Zhai, 2011) and multilingual adaptations of the biencoder and crossencoder architectures from BLINK (Wu et al., 2020). In our experiments on the two task variants, we find both biencoder and crossencoder models significantly outperform the BM25+ baseline. Our results also indicate that the crosslingual task is in general more challenging than the multilingual task. To test the out-of-domain generalization of the proposed linking systems, we additionally create a Wikinews-based evaluation set. We present qualitative analysis highlighting various aspects captured by the proposed dataset, including the need for temporal reasoning over context and tackling diverse event descriptions across languages.
Structured Event Reasoning with Large Language Models
Reasoning about real-life events is a unifying challenge in AI and NLP that has profound utility in a variety of domains, while fallacy in high-stake applications could be catastrophic. Able to work with diverse text in these domains, large language models (LLMs) have proven capable of answering questions and solving problems. However, I show that end-to-end LLMs still systematically fail to reason about complex events, and they lack interpretability due to their black-box nature. To address these issues, I propose three general approaches to use LLMs in conjunction with a structured representation of events. The first is a language-based representation involving relations of sub-events that can be learned by LLMs via fine-tuning. The second is a semi-symbolic representation involving states of entities that can be predicted and leveraged by LLMs via few-shot prompting. The third is a fully symbolic representation that can be predicted by LLMs trained with structured data and be executed by symbolic solvers. On a suite of event reasoning tasks spanning common-sense inference and planning, I show that each approach greatly outperforms end-to-end LLMs with more interpretability. These results suggest manners of synergy between LLMs and structured representations for event reasoning and beyond.
ParaCLAP -- Towards a general language-audio model for computational paralinguistic tasks
Contrastive language-audio pretraining (CLAP) has recently emerged as a method for making audio analysis more generalisable. Specifically, CLAP-style models are able to `answer' a diverse set of language queries, extending the capabilities of audio models beyond a closed set of labels. However, CLAP relies on a large set of (audio, query) pairs for pretraining. While such sets are available for general audio tasks, like captioning or sound event detection, there are no datasets with matched audio and text queries for computational paralinguistic (CP) tasks. As a result, the community relies on generic CLAP models trained for general audio with limited success. In the present study, we explore training considerations for ParaCLAP, a CLAP-style model suited to CP, including a novel process for creating audio-language queries. We demonstrate its effectiveness on a set of computational paralinguistic tasks, where it is shown to surpass the performance of open-source state-of-the-art models.
GIELLM: Japanese General Information Extraction Large Language Model Utilizing Mutual Reinforcement Effect
Information Extraction (IE) stands as a cornerstone in natural language processing, traditionally segmented into distinct sub-tasks. The advent of Large Language Models (LLMs) heralds a paradigm shift, suggesting the feasibility of a singular model addressing multiple IE subtasks. In this vein, we introduce the General Information Extraction Large Language Model (GIELLM), which integrates text Classification, Sentiment Analysis, Named Entity Recognition, Relation Extraction, and Event Extraction using a uniform input-output schema. This innovation marks the first instance of a model simultaneously handling such a diverse array of IE subtasks. Notably, the GIELLM leverages the Mutual Reinforcement Effect (MRE), enhancing performance in integrated tasks compared to their isolated counterparts. Our experiments demonstrate State-of-the-Art (SOTA) results in five out of six Japanese mixed datasets, significantly surpassing GPT-3.5-Turbo. Further, an independent evaluation using the novel Text Classification Relation and Event Extraction(TCREE) dataset corroborates the synergistic advantages of MRE in text and word classification. This breakthrough paves the way for most IE subtasks to be subsumed under a singular LLM framework. Specialized fine-tune task-specific models are no longer needed.
FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels
Temporal point processes (TPP) are a natural tool for modeling event-based data. Among all TPP models, Hawkes processes have proven to be the most widely used, mainly due to their adequate modeling for various applications, particularly when considering exponential or non-parametric kernels. Although non-parametric kernels are an option, such models require large datasets. While exponential kernels are more data efficient and relevant for specific applications where events immediately trigger more events, they are ill-suited for applications where latencies need to be estimated, such as in neuroscience. This work aims to offer an efficient solution to TPP inference using general parametric kernels with finite support. The developed solution consists of a fast ell_2 gradient-based solver leveraging a discretized version of the events. After theoretically supporting the use of discretization, the statistical and computational efficiency of the novel approach is demonstrated through various numerical experiments. Finally, the method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG). Given the use of general parametric kernels, results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
Natural Language Supervision for General-Purpose Audio Representations
Audio-Language models jointly learn multimodal text and audio representations that enable Zero-Shot inference. Models rely on the encoders to create powerful representations of the input and generalize to multiple tasks ranging from sounds, music, and speech. Although models have achieved remarkable performance, there is still a performance gap with task-specific models. In this paper, we propose a Contrastive Language-Audio Pretraining model that is pretrained with a diverse collection of 4.6M audio-text pairs employing two innovative encoders for Zero-Shot inference. To learn audio representations, we trained an audio encoder on 22 audio tasks, instead of the standard training of sound event classification. To learn language representations, we trained an autoregressive decoder-only model instead of the standard encoder-only models. Then, the audio and language representations are brought into a joint multimodal space using Contrastive Learning. We used our encoders to improve the downstream performance by a margin. We extensively evaluated the generalization of our representations on 26 downstream tasks, the largest in the literature. Our model achieves state of the art results in several tasks leading the way towards general-purpose audio representations.
E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.
ACCENT: An Automatic Event Commonsense Evaluation Metric for Open-Domain Dialogue Systems
Commonsense reasoning is omnipresent in human communications and thus is an important feature for open-domain dialogue systems. However, evaluating commonsense in dialogue systems is still an open challenge. We take the first step by focusing on event commonsense that considers events and their relations, and is crucial in both dialogues and general commonsense reasoning. We propose ACCENT, an event commonsense evaluation metric empowered by commonsense knowledge bases (CSKBs). ACCENT first extracts event-relation tuples from a dialogue, and then evaluates the response by scoring the tuples in terms of their compatibility with the CSKB. To evaluate ACCENT, we construct the first public event commonsense evaluation dataset for open-domain dialogues. Our experiments show that ACCENT is an efficient metric for event commonsense evaluation, which achieves higher correlations with human judgments than existing baselines.
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
Event argument extraction (EAE) identifies event arguments and their specific roles for a given event. Recent advancement in generation-based EAE models has shown great performance and generalizability over classification-based models. However, existing generation-based EAE models mostly focus on problem re-formulation and prompt design, without incorporating additional information that has been shown to be effective for classification-based models, such as the abstract meaning representation (AMR) of the input passages. Incorporating such information into generation-based models is challenging due to the heterogeneous nature of the natural language form prevalently used in generation-based models and the structured form of AMRs. In this work, we study strategies to incorporate AMR into generation-based EAE models. We propose AMPERE, which generates AMR-aware prefixes for every layer of the generation model. Thus, the prefix introduces AMR information to the generation-based EAE model and then improves the generation. We also introduce an adjusted copy mechanism to AMPERE to help overcome potential noises brought by the AMR graph. Comprehensive experiments and analyses on ACE2005 and ERE datasets show that AMPERE can get 4% - 10% absolute F1 score improvements with reduced training data and it is in general powerful across different training sizes.
PSELDNets: Pre-trained Neural Networks on Large-scale Synthetic Datasets for Sound Event Localization and Detection
Sound event localization and detection (SELD) has seen substantial advancements through learning-based methods. These systems, typically trained from scratch on specific datasets, have shown considerable generalization capabilities. Recently, deep neural networks trained on large-scale datasets have achieved remarkable success in the sound event classification (SEC) field, prompting an open question of whether these advancements can be extended to develop general-purpose SELD models. In this paper, leveraging the power of pre-trained SEC models, we propose pre-trained SELD networks (PSELDNets) on large-scale synthetic datasets. These synthetic datasets, generated by convolving sound events with simulated spatial room impulse responses (SRIRs), contain 1,167 hours of audio clips with an ontology of 170 sound classes. These PSELDNets are transferred to downstream SELD tasks. When we adapt PSELDNets to specific scenarios, particularly in low-resource data cases, we introduce a data-efficient fine-tuning method, AdapterBit. PSELDNets are evaluated on a synthetic-test-set using collected SRIRs from TAU Spatial Room Impulse Response Database (TAU-SRIR DB) and achieve satisfactory performance. We also conduct our experiments to validate the transferability of PSELDNets to three publicly available datasets and our own collected audio recordings. Results demonstrate that PSELDNets surpass state-of-the-art systems across all publicly available datasets. Given the need for direction-of-arrival estimation, SELD generally relies on sufficient multi-channel audio clips. However, incorporating the AdapterBit, PSELDNets show more efficient adaptability to various tasks using minimal multi-channel or even just monophonic audio clips, outperforming the traditional fine-tuning approaches.
Language Models of Code are Few-Shot Commonsense Learners
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
Differential Privacy has Bounded Impact on Fairness in Classification
We theoretically study the impact of differential privacy on fairness in classification. We prove that, given a class of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the model. This result is a consequence of a more general statement on accuracy conditioned on an arbitrary event (such as membership to a sensitive group), which may be of independent interest. We use the aforementioned Lipschitz property to prove a high probability bound showing that, given enough examples, the fairness level of private models is close to the one of their non-private counterparts.
MetaKP: On-Demand Keyphrase Generation
Traditional keyphrase prediction methods predict a single set of keyphrases per document, failing to cater to the diverse needs of users and downstream applications. To bridge the gap, we introduce on-demand keyphrase generation, a novel paradigm that requires keyphrases that conform to specific high-level goals or intents. For this task, we present MetaKP, a large-scale benchmark comprising four datasets, 7500 documents, and 3760 goals across news and biomedical domains with human-annotated keyphrases. Leveraging MetaKP, we design both supervised and unsupervised methods, including a multi-task fine-tuning approach and a self-consistency prompting method with large language models. The results highlight the challenges of supervised fine-tuning, whose performance is not robust to distribution shifts. By contrast, the proposed self-consistency prompting approach greatly improves the performance of large language models, enabling GPT-4o to achieve 0.548 SemF1, surpassing the performance of a fully fine-tuned BART-base model. Finally, we demonstrate the potential of our method to serve as a general NLP infrastructure, exemplified by its application in epidemic event detection from social media.
Musical Instrument Playing Technique Detection Based on FCN: Using Chinese Bowed-Stringed Instrument as an Example
Unlike melody extraction and other aspects of music transcription, research on playing technique detection is still in its early stages. Compared to existing work mostly focused on playing technique detection for individual single notes, we propose a general end-to-end method based on Sound Event Detection by FCN for musical instrument playing technique detection. In our case, we choose Erhu, a well-known Chinese bowed-stringed instrument, to experiment with our method. Because of the limitation of FCN, we present an algorithm to detect on variable length audio. The effectiveness of the proposed framework is tested on a new dataset, its categorization of techniques is similar to our training dataset. The highest accuracy of our 3 experiments on the new test set is 87.31%. Furthermore, we also evaluate the performance of the proposed framework on 10 real-world studio music (produced by midi) and 7 real-world recording samples to address the ability of generalization on our model.
SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes
Existing methods for the 4D reconstruction of general, non-rigidly deforming objects focus on novel-view synthesis and neglect correspondences. However, time consistency enables advanced downstream tasks like 3D editing, motion analysis, or virtual-asset creation. We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner. Our dynamic-NeRF method takes multi-view RGB videos and background images from static cameras with known camera parameters as input. It then reconstructs the deformations of an estimated canonical model of the geometry and appearance in an online fashion. Since this canonical model is time-invariant, we obtain correspondences even for long-term, long-range motions. We employ neural scene representations to parametrize the components of our method. Like prior dynamic-NeRF methods, we use a backwards deformation model. We find non-trivial adaptations of this model necessary to handle larger motions: We decompose the deformations into a strongly regularized coarse component and a weakly regularized fine component, where the coarse component also extends the deformation field into the space surrounding the object, which enables tracking over time. We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
Igea: a Decoder-Only Language Model for Biomedical Text Generation in Italian
The development of domain-specific language models has significantly advanced natural language processing applications in various specialized fields, particularly in biomedicine. However, the focus has largely been on English-language models, leaving a gap for less-resourced languages such as Italian. This paper introduces Igea, the first decoder-only language model designed explicitly for biomedical text generation in Italian. Built on the Minerva model and continually pretrained on a diverse corpus of Italian medical texts, Igea is available in three model sizes: 350 million, 1 billion, and 3 billion parameters. The models aim to balance computational efficiency and performance, addressing the challenges of managing the peculiarities of medical terminology in Italian. We evaluate Igea using a mix of in-domain biomedical corpora and general-purpose benchmarks, highlighting its efficacy and retention of general knowledge even after the domain-specific training. This paper discusses the model's development and evaluation, providing a foundation for future advancements in Italian biomedical NLP.
BudgetLongformer: Can we Cheaply Pretrain a SotA Legal Language Model From Scratch?
Pretrained transformer models have achieved state-of-the-art results in many tasks and benchmarks recently. Many state-of-the-art Language Models (LMs), however, do not scale well above the threshold of 512 input tokens. In specialized domains though (such as legal, scientific or biomedical), models often need to process very long text (sometimes well above 10000 tokens). Even though many efficient transformers have been proposed (such as Longformer, BigBird or FNet), so far, only very few such efficient models are available for specialized domains. Additionally, since the pretraining process is extremely costly in general - but even more so as the sequence length increases - it is often only in reach of large research labs. One way of making pretraining cheaper is the Replaced Token Detection (RTD) task, by providing more signal during training, since the loss can be computed over all tokens. In this work, we train Longformer models with the efficient RTD task on legal data to showcase that pretraining efficient LMs is possible using much less compute. We evaluate the trained models on challenging summarization tasks requiring the model to summarize long texts to show to what extent the models can achieve good performance on downstream tasks. We find that both the small and base models outperform their baselines on the in-domain BillSum and out-of-domain PubMed tasks in their respective parameter range. We publish our code and models for research purposes.
Grounding Partially-Defined Events in Multimodal Data
How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.
Adapting Large Language Models via Reading Comprehension
We explore how continued pre-training on domain-specific corpora influences large language models, revealing that training on the raw corpora endows the model with domain knowledge, but drastically hurts its prompting ability for question answering. Taken inspiration from human learning via reading comprehension--practice after reading improves the ability to answer questions based on the learned knowledge--we propose a simple method for transforming raw corpora into reading comprehension texts. Each raw text is enriched with a series of tasks related to its content. Our method, highly scalable and applicable to any pre-training corpora, consistently enhances performance across various tasks in three different domains: biomedicine, finance, and law. Notably, our 7B language model achieves competitive performance with domain-specific models of much larger scales, such as BloombergGPT-50B. Furthermore, we demonstrate that domain-specific reading comprehension texts can improve the model's performance even on general benchmarks, showing the potential to develop a general model across even more domains. Our model, code, and data will be available at https://github.com/microsoft/LMOps.
Does Sparsity Help in Learning Misspecified Linear Bandits?
Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in R^d that approximate the rewards in a bandit or RL with a uniform error of varepsilon, searching for an O(varepsilon)-optimal action requires pulling at least Omega(exp(d)) queries. Furthermore, Lattimore et al. (2020) show that a degraded O(varepsilond)-optimal solution can be learned within poly(d/varepsilon) queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the varepsilond barrier. In this paper, we address this question by showing that algorithms can obtain O(varepsilon)-optimal actions by querying O(varepsilon^{-s}d^s) actions, where s is the sparsity parameter, removing the exp(d)-dependence. We then establish information-theoretical lower bounds, i.e., Omega(exp(s)), to show that our upper bound on sample complexity is nearly tight if one demands an error O(s^{delta}varepsilon) for 0<delta<1. For deltageq 1, we further show that poly(s/varepsilon) queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.
Dense-Captioning Events in Videos
Most natural videos contain numerous events. For example, in a video of a "man playing a piano", the video might also contain "another man dancing" or "a crowd clapping". We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with it's unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.
Learning Optical Flow from Event Camera with Rendered Dataset
We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.
SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
Event cameras, with a high dynamic range exceeding 120dB, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at:https://github.com/yunfanLu/SEE.
Towards General Text Embeddings with Multi-stage Contrastive Learning
We present GTE, a general-purpose text embedding model trained with multi-stage contrastive learning. In line with recent advancements in unifying various NLP tasks into a single format, we train a unified text embedding model by employing contrastive learning over a diverse mixture of datasets from multiple sources. By significantly increasing the number of training data during both unsupervised pre-training and supervised fine-tuning stages, we achieve substantial performance gains over existing embedding models. Notably, even with a relatively modest parameter count of 110M, GTE_base outperforms the black-box embedding API provided by OpenAI and even surpasses 10x larger text embedding models on the massive text embedding benchmark. Furthermore, without additional fine-tuning on each programming language individually, our model outperforms previous best code retrievers of similar size by treating code as text. In summary, our model achieves impressive results by effectively harnessing multi-stage contrastive learning, offering a powerful and efficient text embedding model with broad applicability across various NLP and code-related tasks.
GUICourse: From General Vision Language Models to Versatile GUI Agents
Utilizing Graphic User Interface (GUI) for human-computer interaction is essential for accessing a wide range of digital tools. Recent advancements in Vision Language Models (VLMs) highlight the compelling potential to develop versatile agents to help humans finish GUI navigation tasks. However, current VLMs are challenged in terms of fundamental abilities (OCR and grounding) and GUI knowledge (the functions and control methods of GUI elements), preventing them from becoming practical GUI agents. To solve these challenges, we contribute GUICourse, a suite of datasets to train visual-based GUI agents from general VLMs. First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs. Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions. Experiments demonstrate that our GUI agents have better performance on common GUI tasks than their baseline VLMs. Even the small-size GUI agent (with 3.1B parameters) can still work well on single-step and multi-step GUI tasks. Finally, we analyze the different varieties in the training stage of this agent by ablation study. Our source codes and datasets are released at https://github.com/yiye3/GUICourse.
General-Purpose Retrieval-Enhanced Medical Prediction Model Using Near-Infinite History
Developing clinical prediction models (e.g., mortality prediction) based on electronic health records (EHRs) typically relies on expert opinion for feature selection and adjusting observation window size. This burdens experts and creates a bottleneck in the development process. We propose Retrieval-Enhanced Medical prediction model (REMed) to address such challenges. REMed can essentially evaluate an unlimited number of clinical events, select the relevant ones, and make predictions. This approach effectively eliminates the need for manual feature selection and enables an unrestricted observation window. We verified these properties through experiments on 27 clinical tasks and two independent cohorts from publicly available EHR datasets, where REMed outperformed other contemporary architectures that aim to handle as many events as possible. Notably, we found that the preferences of REMed align closely with those of medical experts. We expect our approach to significantly expedite the development of EHR prediction models by minimizing clinicians' need for manual involvement.
General Instance Distillation for Object Detection
In recent years, knowledge distillation has been proved to be an effective solution for model compression. This approach can make lightweight student models acquire the knowledge extracted from cumbersome teacher models. However, previous distillation methods of detection have weak generalization for different detection frameworks and rely heavily on ground truth (GT), ignoring the valuable relation information between instances. Thus, we propose a novel distillation method for detection tasks based on discriminative instances without considering the positive or negative distinguished by GT, which is called general instance distillation (GID). Our approach contains a general instance selection module (GISM) to make full use of feature-based, relation-based and response-based knowledge for distillation. Extensive results demonstrate that the student model achieves significant AP improvement and even outperforms the teacher in various detection frameworks. Specifically, RetinaNet with ResNet-50 achieves 39.1% in mAP with GID on COCO dataset, which surpasses the baseline 36.2% by 2.9%, and even better than the ResNet-101 based teacher model with 38.1% AP.
BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models
Diffusion models have made tremendous progress in text-driven image and video generation. Now text-to-image foundation models are widely applied to various downstream image synthesis tasks, such as controllable image generation and image editing, while downstream video synthesis tasks are less explored for several reasons. First, it requires huge memory and compute overhead to train a video generation foundation model. Even with video foundation models, additional costly training is still required for downstream video synthesis tasks. Second, although some works extend image diffusion models into videos in a training-free manner, temporal consistency cannot be well kept. Finally, these adaption methods are specifically designed for one task and fail to generalize to different downstream video synthesis tasks. To mitigate these issues, we propose a training-free general-purpose video synthesis framework, coined as BIVDiff, via bridging specific image diffusion models and general text-to-video foundation diffusion models. Specifically, we first use an image diffusion model (like ControlNet, Instruct Pix2Pix) for frame-wise video generation, then perform Mixed Inversion on the generated video, and finally input the inverted latents into the video diffusion model for temporal smoothing. Decoupling image and video models enables flexible image model selection for different purposes, which endows the framework with strong task generalization and high efficiency. To validate the effectiveness and general use of BIVDiff, we perform a wide range of video generation tasks, including controllable video generation video editing, video inpainting and outpainting. Our project page is available at https://bivdiff.github.io.
2-D SSM: A General Spatial Layer for Visual Transformers
A central objective in computer vision is to design models with appropriate 2-D inductive bias. Desiderata for 2D inductive bias include two-dimensional position awareness, dynamic spatial locality, and translation and permutation invariance. To address these goals, we leverage an expressive variation of the multidimensional State Space Model (SSM). Our approach introduces efficient parameterization, accelerated computation, and a suitable normalization scheme. Empirically, we observe that incorporating our layer at the beginning of each transformer block of Vision Transformers (ViT) significantly enhances performance for multiple ViT backbones and across datasets. The new layer is effective even with a negligible amount of additional parameters and inference time. Ablation studies and visualizations demonstrate that the layer has a strong 2-D inductive bias. For example, vision transformers equipped with our layer exhibit effective performance even without positional encoding
Vision-Language Models Meet Meteorology: Developing Models for Extreme Weather Events Detection with Heatmaps
Real-time detection and prediction of extreme weather protect human lives and infrastructure. Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS), which can be slow and error-prone. Our research redefines Extreme Weather Events Detection (EWED) by framing it as a Visual Question Answering (VQA) problem, thereby introducing a more precise and automated solution. Leveraging Vision-Language Models (VLM) to simultaneously process visual and textual data, we offer an effective aid to enhance the analysis process of weather heatmaps. Our initial assessment of general-purpose VLMs (e.g., GPT-4-Vision) on EWED revealed poor performance, characterized by low accuracy and frequent hallucinations due to inadequate color differentiation and insufficient meteorological knowledge. To address these challenges, we introduce ClimateIQA, the first meteorological VQA dataset, which includes 8,760 wind gust heatmaps and 254,040 question-answer pairs covering four question types, both generated from the latest climate reanalysis data. We also propose Sparse Position and Outline Tracking (SPOT), an innovative technique that leverages OpenCV and K-Means clustering to capture and depict color contours in heatmaps, providing ClimateIQA with more accurate color spatial location information. Finally, we present Climate-Zoo, the first meteorological VLM collection, which adapts VLMs to meteorological applications using the ClimateIQA dataset. Experiment results demonstrate that models from Climate-Zoo substantially outperform state-of-the-art general VLMs, achieving an accuracy increase from 0% to over 90% in EWED verification. The datasets and models in this study are publicly available for future climate science research: https://github.com/AlexJJJChen/Climate-Zoo.
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
General Point Model with Autoencoding and Autoregressive
The pre-training architectures of large language models encompass various types, including autoencoding models, autoregressive models, and encoder-decoder models. We posit that any modality can potentially benefit from a large language model, as long as it undergoes vector quantization to become discrete tokens. Inspired by GLM, we propose a General Point Model (GPM) which seamlessly integrates autoencoding and autoregressive tasks in point cloud transformer. This model is versatile, allowing fine-tuning for downstream point cloud representation tasks, as well as unconditional and conditional generation tasks. GPM enhances masked prediction in autoencoding through various forms of mask padding tasks, leading to improved performance in point cloud understanding. Additionally, GPM demonstrates highly competitive results in unconditional point cloud generation tasks, even exhibiting the potential for conditional generation tasks by modifying the input's conditional information. Compared to models like Point-BERT, MaskPoint and PointMAE, our GPM achieves superior performance in point cloud understanding tasks. Furthermore, the integration of autoregressive and autoencoding within the same transformer underscores its versatility across different downstream tasks.
General-purpose, long-context autoregressive modeling with Perceiver AR
Real-world data is high-dimensional: a book, image, or musical performance can easily contain hundreds of thousands of elements even after compression. However, the most commonly used autoregressive models, Transformers, are prohibitively expensive to scale to the number of inputs and layers needed to capture this long-range structure. We develop Perceiver AR, an autoregressive, modality-agnostic architecture which uses cross-attention to map long-range inputs to a small number of latents while also maintaining end-to-end causal masking. Perceiver AR can directly attend to over a hundred thousand tokens, enabling practical long-context density estimation without the need for hand-crafted sparsity patterns or memory mechanisms. When trained on images or music, Perceiver AR generates outputs with clear long-term coherence and structure. Our architecture also obtains state-of-the-art likelihood on long-sequence benchmarks, including 64 x 64 ImageNet images and PG-19 books.
Large Language Models as General Pattern Machines
We observe that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences -- from arbitrary ones procedurally generated by probabilistic context-free grammars (PCFG), to more rich spatial patterns found in the Abstract Reasoning Corpus (ARC), a general AI benchmark, prompted in the style of ASCII art. Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary. These results suggest that without any additional training, LLMs can serve as general sequence modelers, driven by in-context learning. In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics -- from extrapolating sequences of numbers that represent states over time to complete simple motions, to least-to-most prompting of reward-conditioned trajectories that can discover and represent closed-loop policies (e.g., a stabilizing controller for CartPole). While difficult to deploy today for real systems due to latency, context size limitations, and compute costs, the approach of using LLMs to drive low-level control may provide an exciting glimpse into how the patterns among words could be transferred to actions.
A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
What can online reinforcement learning with function approximation benefit from general coverage conditions?
In online reinforcement learning (RL), instead of employing standard structural assumptions on Markov decision processes (MDPs), using a certain coverage condition (original from offline RL) is enough to ensure sample-efficient guarantees (Xie et al. 2023). In this work, we focus on this new direction by digging more possible and general coverage conditions, and study the potential and the utility of them in efficient online RL. We identify more concepts, including the L^p variant of concentrability, the density ratio realizability, and trade-off on the partial/rest coverage condition, that can be also beneficial to sample-efficient online RL, achieving improved regret bound. Furthermore, if exploratory offline data are used, under our coverage conditions, both statistically and computationally efficient guarantees can be achieved for online RL. Besides, even though the MDP structure is given, e.g., linear MDP, we elucidate that, good coverage conditions are still beneficial to obtain faster regret bound beyond O(T) and even a logarithmic order regret. These results provide a good justification for the usage of general coverage conditions in efficient online RL.
General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
Traditional OCR systems (OCR-1.0) are increasingly unable to meet people's usage due to the growing demand for intelligent processing of man-made optical characters. In this paper, we collectively refer to all artificial optical signals (e.g., plain texts, math/molecular formulas, tables, charts, sheet music, and even geometric shapes) as "characters" and propose the General OCR Theory along with an excellent model, namely GOT, to promote the arrival of OCR-2.0. The GOT, with 580M parameters, is a unified, elegant, and end-to-end model, consisting of a high-compression encoder and a long-contexts decoder. As an OCR-2.0 model, GOT can handle all the above "characters" under various OCR tasks. On the input side, the model supports commonly used scene- and document-style images in slice and whole-page styles. On the output side, GOT can generate plain or formatted results (markdown/tikz/smiles/kern) via an easy prompt. Besides, the model enjoys interactive OCR features, i.e., region-level recognition guided by coordinates or colors. Furthermore, we also adapt dynamic resolution and multi-page OCR technologies to GOT for better practicality. In experiments, we provide sufficient results to prove the superiority of our model.
General Detection-based Text Line Recognition
We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten (HTR), with Latin, Chinese, or ciphered characters. Detection-based approaches have until now been largely discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with sufficiently diverse data enables learning reasonable character localization for any script; (ii) modern transformer-based detectors can jointly detect a large number of instances, and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach, dubbed DTLR, builds on a completely different paradigm than state-of-the-art HTR methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, we demonstrate good performance on a large range of scripts, usually tackled with specialized approaches. In particular, we improve state-of-the-art performances for Chinese script recognition on the CASIA v2 dataset, and for cipher recognition on the Borg and Copiale datasets. Our code and models are available at https://github.com/raphael-baena/DTLR.
Adapting General Disentanglement-Based Speaker Anonymization for Enhanced Emotion Preservation
A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks.
AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR
Africa has a very low doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day -- a heavy patient burden compared with developed countries -- but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark.
Multi-view Self-supervised Disentanglement for General Image Denoising
With its significant performance improvements, the deep learning paradigm has become a standard tool for modern image denoisers. While promising performance has been shown on seen noise distributions, existing approaches often suffer from generalisation to unseen noise types or general and real noise. It is understandable as the model is designed to learn paired mapping (e.g. from a noisy image to its clean version). In this paper, we instead propose to learn to disentangle the noisy image, under the intuitive assumption that different corrupted versions of the same clean image share a common latent space. A self-supervised learning framework is proposed to achieve the goal, without looking at the latent clean image. By taking two different corrupted versions of the same image as input, the proposed Multi-view Self-supervised Disentanglement (MeD) approach learns to disentangle the latent clean features from the corruptions and recover the clean image consequently. Extensive experimental analysis on both synthetic and real noise shows the superiority of the proposed method over prior self-supervised approaches, especially on unseen novel noise types. On real noise, the proposed method even outperforms its supervised counterparts by over 3 dB.
LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
GeoManip: Geometric Constraints as General Interfaces for Robot Manipulation
We present GeoManip, a framework to enable generalist robots to leverage essential conditions derived from object and part relationships, as geometric constraints, for robot manipulation. For example, cutting the carrot requires adhering to a geometric constraint: the blade of the knife should be perpendicular to the carrot's direction. By interpreting these constraints through symbolic language representations and translating them into low-level actions, GeoManip bridges the gap between natural language and robotic execution, enabling greater generalizability across diverse even unseen tasks, objects, and scenarios. Unlike vision-language-action models that require extensive training, operates training-free by utilizing large foundational models: a constraint generation module that predicts stage-specific geometric constraints and a geometry parser that identifies object parts involved in these constraints. A solver then optimizes trajectories to satisfy inferred constraints from task descriptions and the scene. Furthermore, GeoManip learns in-context and provides five appealing human-robot interaction features: on-the-fly policy adaptation, learning from human demonstrations, learning from failure cases, long-horizon action planning, and efficient data collection for imitation learning. Extensive evaluations on both simulations and real-world scenarios demonstrate GeoManip's state-of-the-art performance, with superior out-of-distribution generalization while avoiding costly model training.
RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model
The intelligent interpretation of buildings plays a significant role in urban planning and management, macroeconomic analysis, population dynamics, etc. Remote sensing image building interpretation primarily encompasses building extraction and change detection. However, current methodologies often treat these two tasks as separate entities, thereby failing to leverage shared knowledge. Moreover, the complexity and diversity of remote sensing image scenes pose additional challenges, as most algorithms are designed to model individual small datasets, thus lacking cross-scene generalization. In this paper, we propose a comprehensive remote sensing image building understanding model, termed RSBuilding, developed from the perspective of the foundation model. RSBuilding is designed to enhance cross-scene generalization and task universality. Specifically, we extract image features based on the prior knowledge of the foundation model and devise a multi-level feature sampler to augment scale information. To unify task representation and integrate image spatiotemporal clues, we introduce a cross-attention decoder with task prompts. Addressing the current shortage of datasets that incorporate annotations for both tasks, we have developed a federated training strategy to facilitate smooth model convergence even when supervision for some tasks is missing, thereby bolstering the complementarity of different tasks. Our model was trained on a dataset comprising up to 245,000 images and validated on multiple building extraction and change detection datasets. The experimental results substantiate that RSBuilding can concurrently handle two structurally distinct tasks and exhibits robust zero-shot generalization capabilities.
HmBlogs: A big general Persian corpus
This paper introduces the hmBlogs corpus for Persian, as a low resource language. This corpus has been prepared based on a collection of nearly 20 million blog posts over a period of about 15 years from a space of Persian blogs and includes more than 6.8 billion tokens. It can be claimed that this corpus is currently the largest Persian corpus that has been prepared independently for the Persian language. This corpus is presented in both raw and preprocessed forms, and based on the preprocessed corpus some word embedding models are produced. By the provided models, the hmBlogs is compared with some of the most important corpora available in Persian, and the results show the superiority of the hmBlogs corpus over the others. These evaluations also present the importance and effects of corpora, evaluation datasets, model production methods, different hyperparameters and even the evaluation methods. In addition to evaluating the corpus and its produced language models, this research also presents a semantic analogy dataset.
GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals, and can be applied in various fields. In the medical field, LVLMs have a high potential to offer substantial assistance for diagnosis and treatment. Before that, it is crucial to develop benchmarks to evaluate LVLMs' effectiveness in various medical applications. Current benchmarks are often built upon specific academic literature, mainly focusing on a single domain, and lacking varying perceptual granularities. Thus, they face specific challenges, including limited clinical relevance, incomplete evaluations, and insufficient guidance for interactive LVLMs. To address these limitations, we developed the GMAI-MMBench, the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date. It is constructed from 285 datasets across 39 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format. Additionally, we implemented a lexical tree structure that allows users to customize evaluation tasks, accommodating various assessment needs and substantially supporting medical AI research and applications. We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o only achieves an accuracy of 52%, indicating significant room for improvement. Moreover, we identified five key insufficiencies in current cutting-edge LVLMs that need to be addressed to advance the development of better medical applications. We believe that GMAI-MMBench will stimulate the community to build the next generation of LVLMs toward GMAI. Project Page: https://uni-medical.github.io/GMAI-MMBench.github.io/
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.
SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as General Image Priors
2D-to-3D reconstruction is an ill-posed problem, yet humans are good at solving this problem due to their prior knowledge of the 3D world developed over years. Driven by this observation, we propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models. Formulating single-view reconstruction as an image-conditioned 3D generation problem, we optimize the NeRF representations by minimizing a diffusion loss on its arbitrary view renderings with a pretrained image diffusion model under the input-view constraint. We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model. This is essentially helpful for improving multiview content coherence as it narrows down the general image prior conditioned on the semantic and visual features of the single-view input image. Additionally, we introduce a geometric loss based on estimated depth maps to regularize the underlying 3D geometry of the NeRF. Experimental results on the DTU MVS dataset show that our method can synthesize novel views with higher quality even compared to existing methods trained on this dataset. We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. User preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we present a solution rooted in validated general user preferences, which are derived from thorough user research. We map these preferences to the properties of CEs. Additionally, we introduce a novel method, Tree-based Conditions Optional Links (T-COL), which incorporates two optional structures and multiple condition groups for generating CEs adaptable to general user preferences. Meanwhile, we employ T-COL to enhance the robustness of CEs with specific conditions, making them more valid even when the ML model is replaced. Our experimental comparisons under different user preferences show that T-COL outperforms all baselines, including Large Language Models which are shown to be able to generate counterfactuals.
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
From Beginner to Expert: Modeling Medical Knowledge into General LLMs
Recently, large language model (LLM) based artificial intelligence (AI) systems have demonstrated remarkable capabilities in natural language understanding and generation. However, these models face a significant challenge when it comes to sensitive applications, such as reasoning over medical knowledge and answering medical questions in a physician-like manner. Prior studies attempted to overcome this challenge by increasing the model size (>100B) to learn more general medical knowledge, while there is still room for improvement in LLMs with smaller-scale model sizes (<100B). In this work, we start from a pre-trained general LLM model (AntGLM-10B) and fine-tune it from a medical beginner towards a medical expert (called AntGLM-Med-10B), which leverages a 3-stage optimization procedure, i.e., general medical knowledge injection, medical domain instruction tuning, and specific medical task adaptation. Our contributions are threefold: (1) We specifically investigate how to adapt a pre-trained general LLM in medical domain, especially for a specific medical task. (2) We collect and construct large-scale medical datasets for each stage of the optimization process. These datasets encompass various data types and tasks, such as question-answering, medical reasoning, multi-choice questions, and medical conversations. (3) Specifically for multi-choice questions in the medical domain, we propose a novel Verification-of-Choice approach for prompting engineering, which significantly enhances the reasoning ability of LLMs. Remarkably, by combining the above approaches, our AntGLM-Med-10B model can outperform the most of LLMs on PubMedQA, including both general and medical LLMs, even when these LLMs have larger model size.
Lip Reading for Low-resource Languages by Learning and Combining General Speech Knowledge and Language-specific Knowledge
This paper proposes a novel lip reading framework, especially for low-resource languages, which has not been well addressed in the previous literature. Since low-resource languages do not have enough video-text paired data to train the model to have sufficient power to model lip movements and language, it is regarded as challenging to develop lip reading models for low-resource languages. In order to mitigate the challenge, we try to learn general speech knowledge, the ability to model lip movements, from a high-resource language through the prediction of speech units. It is known that different languages partially share common phonemes, thus general speech knowledge learned from one language can be extended to other languages. Then, we try to learn language-specific knowledge, the ability to model language, by proposing Language-specific Memory-augmented Decoder (LMDecoder). LMDecoder saves language-specific audio features into memory banks and can be trained on audio-text paired data which is more easily accessible than video-text paired data. Therefore, with LMDecoder, we can transform the input speech units into language-specific audio features and translate them into texts by utilizing the learned rich language knowledge. Finally, by combining general speech knowledge and language-specific knowledge, we can efficiently develop lip reading models even for low-resource languages. Through extensive experiments using five languages, English, Spanish, French, Italian, and Portuguese, the effectiveness of the proposed method is evaluated.
Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding
Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.
News Deja Vu: Connecting Past and Present with Semantic Search
Social scientists and the general public often analyze contemporary events by drawing parallels with the past, a process complicated by the vast, noisy, and unstructured nature of historical texts. For example, hundreds of millions of page scans from historical newspapers have been noisily transcribed. Traditional sparse methods for searching for relevant material in these vast corpora, e.g., with keywords, can be brittle given complex vocabularies and OCR noise. This study introduces News Deja Vu, a novel semantic search tool that leverages transformer large language models and a bi-encoder approach to identify historical news articles that are most similar to modern news queries. News Deja Vu first recognizes and masks entities, in order to focus on broader parallels rather than the specific named entities being discussed. Then, a contrastively trained, lightweight bi-encoder retrieves historical articles that are most similar semantically to a modern query, illustrating how phenomena that might seem unique to the present have varied historical precedents. Aimed at social scientists, the user-friendly News Deja Vu package is designed to be accessible for those who lack extensive familiarity with deep learning. It works with large text datasets, and we show how it can be deployed to a massive scale corpus of historical, open-source news articles. While human expertise remains important for drawing deeper insights, News Deja Vu provides a powerful tool for exploring parallels in how people have perceived past and present.
AGI Safety Literature Review
The development of Artificial General Intelligence (AGI) promises to be a major event. Along with its many potential benefits, it also raises serious safety concerns (Bostrom, 2014). The intention of this paper is to provide an easily accessible and up-to-date collection of references for the emerging field of AGI safety. A significant number of safety problems for AGI have been identified. We list these, and survey recent research on solving them. We also cover works on how best to think of AGI from the limited knowledge we have today, predictions for when AGI will first be created, and what will happen after its creation. Finally, we review the current public policy on AGI.
Coverage and capacity scaling laws in downlink ultra-dense cellular networks
Driven by new types of wireless devices and the proliferation of bandwidth-intensive applications, data traffic and the corresponding network load are increasing dramatically. Network densification has been recognized as a promising and efficient way to provide higher network capacity and enhanced coverage. Most prior work on performance analysis of ultra-dense networks (UDNs) has focused on random spatial deployment with idealized singular path loss models and Rayleigh fading. In this paper, we consider a more precise and general model, which incorporates multi-slope path loss and general fading distributions. We derive the tail behavior and scaling laws for the coverage probability and the capacity considering strongest base station association in a Poisson field network. Our analytical results identify the regimes in which the signal-to-interference-plus-noise ratio (SINR) either asymptotically grows, saturates, or decreases with increasing network density. We establish general results on when UDNs lead to worse or even zero SINR coverage and capacity, and we provide crisp insights on the fundamental limits of wireless network densification.
Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing
Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpora, such as newswire and Web. A prevailing assumption is that even domain-specific pretraining can benefit by starting from general-domain language models. In this paper, we challenge this assumption by showing that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models. To facilitate this investigation, we compile a comprehensive biomedical NLP benchmark from publicly-available datasets. Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks, leading to new state-of-the-art results across the board. Further, in conducting a thorough evaluation of modeling choices, both for pretraining and task-specific fine-tuning, we discover that some common practices are unnecessary with BERT models, such as using complex tagging schemes in named entity recognition (NER). To help accelerate research in biomedical NLP, we have released our state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring our BLURB benchmark (short for Biomedical Language Understanding & Reasoning Benchmark) at https://aka.ms/BLURB.
Viewpoint Textual Inversion: Unleashing Novel View Synthesis with Pretrained 2D Diffusion Models
Text-to-image diffusion models understand spatial relationship between objects, but do they represent the true 3D structure of the world from only 2D supervision? We demonstrate that yes, 3D knowledge is encoded in 2D image diffusion models like Stable Diffusion, and we show that this structure can be exploited for 3D vision tasks. Our method, Viewpoint Neural Textual Inversion (ViewNeTI), controls the 3D viewpoint of objects in generated images from frozen diffusion models. We train a small neural mapper to take camera viewpoint parameters and predict text encoder latents; the latents then condition the diffusion generation process to produce images with the desired camera viewpoint. ViewNeTI naturally addresses Novel View Synthesis (NVS). By leveraging the frozen diffusion model as a prior, we can solve NVS with very few input views; we can even do single-view novel view synthesis. Our single-view NVS predictions have good semantic details and photorealism compared to prior methods. Our approach is well suited for modeling the uncertainty inherent in sparse 3D vision problems because it can efficiently generate diverse samples. Our view-control mechanism is general, and can even change the camera view in images generated by user-defined prompts.
Rationale-Augmented Ensembles in Language Models
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demonstrate how existing approaches, which rely on manual prompt engineering, are subject to sub-optimal rationales that may harm performance. To mitigate this brittleness, we propose a unified framework of rationale-augmented ensembles, where we identify rationale sampling in the output space as the key component to robustly improve performance. This framework is general and can easily be extended to common natural language processing tasks, even those that do not traditionally leverage intermediate steps, such as question answering, word sense disambiguation, and sentiment analysis. We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches--including standard prompting without rationales and rationale-based chain-of-thought prompting--while simultaneously improving interpretability of model predictions through the associated rationales.
Smooth activations and reproducibility in deep networks
Deep networks are gradually penetrating almost every domain in our lives due to their amazing success. However, with substantive performance accuracy improvements comes the price of irreproducibility. Two identical models, trained on the exact same training dataset may exhibit large differences in predictions on individual examples even when average accuracy is similar, especially when trained on highly distributed parallel systems. The popular Rectified Linear Unit (ReLU) activation has been key to recent success of deep networks. We demonstrate, however, that ReLU is also a catalyzer to irreproducibility in deep networks. We show that not only can activations smoother than ReLU provide better accuracy, but they can also provide better accuracy-reproducibility tradeoffs. We propose a new family of activations; Smooth ReLU (SmeLU), designed to give such better tradeoffs, while also keeping the mathematical expression simple, and thus implementation cheap. SmeLU is monotonic, mimics ReLU, while providing continuous gradients, yielding better reproducibility. We generalize SmeLU to give even more flexibility and then demonstrate that SmeLU and its generalized form are special cases of a more general methodology of REctified Smooth Continuous Unit (RESCU) activations. Empirical results demonstrate the superior accuracy-reproducibility tradeoffs with smooth activations, SmeLU in particular.
Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions
A great number of deep learning based models have been recently proposed for automatic music composition. Among these models, the Transformer stands out as a prominent approach for generating expressive classical piano performance with a coherent structure of up to one minute. The model is powerful in that it learns abstractions of data on its own, without much human-imposed domain knowledge or constraints. In contrast with this general approach, this paper shows that Transformers can do even better for music modeling, when we improve the way a musical score is converted into the data fed to a Transformer model. In particular, we seek to impose a metrical structure in the input data, so that Transformers can be more easily aware of the beat-bar-phrase hierarchical structure in music. The new data representation maintains the flexibility of local tempo changes, and provides hurdles to control the rhythmic and harmonic structure of music. With this approach, we build a Pop Music Transformer that composes Pop piano music with better rhythmic structure than existing Transformer models.
Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function f(x) while enforcing a bound constraint |x|_infty leq 1/lambda. Lion achieves this through the incorporation of decoupled weight decay, where lambda represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-kappa algorithms, where the sign(cdot) operator in Lion is replaced by the subgradient of a convex function kappa, leading to the solution of a general composite optimization problem of min_x f(x) + kappa^*(x). Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
LAR-ECHR: A New Legal Argument Reasoning Task and Dataset for Cases of the European Court of Human Rights
We present Legal Argument Reasoning (LAR), a novel task designed to evaluate the legal reasoning capabilities of Large Language Models (LLMs). The task requires selecting the correct next statement (from multiple choice options) in a chain of legal arguments from court proceedings, given the facts of the case. We constructed a dataset (LAR-ECHR) for this task using cases from the European Court of Human Rights (ECHR). We evaluated seven general-purpose LLMs on LAR-ECHR and found that (a) the ranking of the models is aligned with that of LegalBench, an established US-based legal reasoning benchmark, even though LAR-ECHR is based on EU law, (b) LAR-ECHR distinguishes top models more clearly, compared to LegalBench, (c) even the best model (GPT-4o) obtains 75.8% accuracy on LAR-ECHR, indicating significant potential for further model improvement. The process followed to construct LAR-ECHR can be replicated with cases from other legal systems.
IDEA-Bench: How Far are Generative Models from Professional Designing?
Real-world design tasks - such as picture book creation, film storyboard development using character sets, photo retouching, visual effects, and font transfer - are highly diverse and complex, requiring deep interpretation and extraction of various elements from instructions, descriptions, and reference images. The resulting images often implicitly capture key features from references or user inputs, making it challenging to develop models that can effectively address such varied tasks. While existing visual generative models can produce high-quality images based on prompts, they face significant limitations in professional design scenarios that involve varied forms and multiple inputs and outputs, even when enhanced with adapters like ControlNets and LoRAs. To address this, we introduce IDEA-Bench, a comprehensive benchmark encompassing 100 real-world design tasks, including rendering, visual effects, storyboarding, picture books, fonts, style-based, and identity-preserving generation, with 275 test cases to thoroughly evaluate a model's general-purpose generation capabilities. Notably, even the best-performing model only achieves 22.48 on IDEA-Bench, while the best general-purpose model only achieves 6.81. We provide a detailed analysis of these results, highlighting the inherent challenges and providing actionable directions for improvement. Additionally, we provide a subset of 18 representative tasks equipped with multimodal large language model (MLLM)-based auto-evaluation techniques to facilitate rapid model development and comparison. We releases the benchmark data, evaluation toolkits, and an online leaderboard at https://github.com/ali-vilab/IDEA-Bench, aiming to drive the advancement of generative models toward more versatile and applicable intelligent design systems.
Disappearing repositories -- taking an infrastructure perspective on the long-term availability of research data
Currently, there is limited research investigating the phenomenon of research data repositories being shut down, and the impact this has on the long-term availability of data. This paper takes an infrastructure perspective on the preservation of research data by using a registry to identify 191 research data repositories that have been closed and presenting information on the shutdown process. The results show that 6.2 % of research data repositories indexed in the registry were shut down. The risks resulting in repository shutdown are varied. The median age of a repository when shutting down is 12 years. Strategies to prevent data loss at the infrastructure level are pursued to varying extent. 44 % of the repositories in the sample migrated data to another repository, and 12 % maintain limited access to their data collection. However, both strategies are not permanent solutions. Finally, the general lack of information on repository shutdown events as well as the effect on the findability of data and the permanence of the scholarly record are discussed.
GASS: Generalizing Audio Source Separation with Large-scale Data
Universal source separation targets at separating the audio sources of an arbitrary mix, removing the constraint to operate on a specific domain like speech or music. Yet, the potential of universal source separation is limited because most existing works focus on mixes with predominantly sound events, and small training datasets also limit its potential for supervised learning. Here, we study a single general audio source separation (GASS) model trained to separate speech, music, and sound events in a supervised fashion with a large-scale dataset. We assess GASS models on a diverse set of tasks. Our strong in-distribution results show the feasibility of GASS models, and the competitive out-of-distribution performance in sound event and speech separation shows its generalization abilities. Yet, it is challenging for GASS models to generalize for separating out-of-distribution cinematic and music content. We also fine-tune GASS models on each dataset and consistently outperform the ones without pre-training. All fine-tuned models (except the music separation one) obtain state-of-the-art results in their respective benchmarks.
Submodular Reinforcement Learning
In reinforcement learning (RL), rewards of states are typically considered additive, and following the Markov assumption, they are independent of states visited previously. In many important applications, such as coverage control, experiment design and informative path planning, rewards naturally have diminishing returns, i.e., their value decreases in light of similar states visited previously. To tackle this, we propose submodular RL (SubRL), a paradigm which seeks to optimize more general, non-additive (and history-dependent) rewards modelled via submodular set functions which capture diminishing returns. Unfortunately, in general, even in tabular settings, we show that the resulting optimization problem is hard to approximate. On the other hand, motivated by the success of greedy algorithms in classical submodular optimization, we propose SubPO, a simple policy gradient-based algorithm for SubRL that handles non-additive rewards by greedily maximizing marginal gains. Indeed, under some assumptions on the underlying Markov Decision Process (MDP), SubPO recovers optimal constant factor approximations of submodular bandits. Moreover, we derive a natural policy gradient approach for locally optimizing SubRL instances even in large state- and action- spaces. We showcase the versatility of our approach by applying SubPO to several applications, such as biodiversity monitoring, Bayesian experiment design, informative path planning, and coverage maximization. Our results demonstrate sample efficiency, as well as scalability to high-dimensional state-action spaces.
Evaluation of Word Embeddings for the Social Sciences
Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships.
Teaching Arithmetic to Small Transformers
Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities.
OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics
Remarkable progress has been made in recent years in the fields of vision, language, and robotics. We now have vision models capable of recognizing objects based on language queries, navigation systems that can effectively control mobile systems, and grasping models that can handle a wide range of objects. Despite these advancements, general-purpose applications of robotics still lag behind, even though they rely on these fundamental capabilities of recognition, navigation, and grasping. In this paper, we adopt a systems-first approach to develop a new Open Knowledge-based robotics framework called OK-Robot. By combining Vision-Language Models (VLMs) for object detection, navigation primitives for movement, and grasping primitives for object manipulation, OK-Robot offers a integrated solution for pick-and-drop operations without requiring any training. To evaluate its performance, we run OK-Robot in 10 real-world home environments. The results demonstrate that OK-Robot achieves a 58.5% success rate in open-ended pick-and-drop tasks, representing a new state-of-the-art in Open Vocabulary Mobile Manipulation (OVMM) with nearly 1.8x the performance of prior work. On cleaner, uncluttered environments, OK-Robot's performance increases to 82%. However, the most important insight gained from OK-Robot is the critical role of nuanced details when combining Open Knowledge systems like VLMs with robotic modules. Videos of our experiments are available on our website: https://ok-robot.github.io
Towards Analyzing and Mitigating Sycophancy in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have shown significant capability in vision-language understanding. However, one critical issue that persists in these models is sycophancy, which means models are unduly influenced by leading or deceptive prompts, resulting in biased outputs and hallucinations. Despite the progress in LVLMs, evaluating and mitigating sycophancy is yet much under-explored. In this work, we fill this gap by systematically analyzing sycophancy on various VL benchmarks with curated leading queries and further proposing a text contrastive decoding method for mitigation. While the specific sycophantic behavior varies significantly among models, our analysis reveals the severe deficiency of all LVLMs in resilience of sycophancy across various tasks. For improvement, we propose Leading Query Contrastive Decoding (LQCD), a model-agnostic method focusing on calibrating the LVLMs' over-reliance on leading cues by identifying and suppressing the probabilities of sycophancy tokens at the decoding stage. Extensive experiments show that LQCD effectively mitigate sycophancy, outperforming both prompt engineering methods and common methods for hallucination mitigation. We further demonstrate that LQCD does not hurt but even slightly improves LVLMs' responses to neutral queries, suggesting it being a more effective strategy for general-purpose decoding but not limited to sycophancy.
Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA
Large Multimodal Models (LMMs) have shown remarkable progress in the field of medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that state-of-the-art models, when subjected to simple probing evaluation, perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4V and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields.
Exploring Human-Like Translation Strategy with Large Language Models
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. In contrast to traditional machine translation that focuses solely on source-target mapping, LLM-based translation can potentially mimic the human translation process that takes many preparatory steps to ensure high-quality translation. This work aims to explore this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs to first analyze the given source text and extract three aspects of translation-related knowledge: keywords, topics and relevant demonstrations to guide the translation process. To filter out the noisy and unhelpful knowledge, we employ a selection mechanism based on quality estimation. Experiments suggest that MAPS brings significant and consistent improvements over text-davinci-003 and Alpaca on eight translation directions from the latest WMT22 test sets. Our further analysis shows that the extracted knowledge is critical in resolving up to 59% of hallucination mistakes in translation. Code is available at https://github.com/zwhe99/MAPS-mt.
On the Expressivity Role of LayerNorm in Transformers' Attention
Layer Normalization (LayerNorm) is an inherent component in all Transformer-based models. In this paper, we show that LayerNorm is crucial to the expressivity of the multi-head attention layer that follows it. This is in contrast to the common belief that LayerNorm's only role is to normalize the activations during the forward pass, and their gradients during the backward pass. We consider a geometric interpretation of LayerNorm and show that it consists of two components: (a) projection of the input vectors to a d-1 space that is orthogonal to the left[1,1,...,1right] vector, and (b) scaling of all vectors to the same norm of d. We show that each of these components is important for the attention layer that follows it in Transformers: (a) projection allows the attention mechanism to create an attention query that attends to all keys equally, offloading the need to learn this operation by the attention; and (b) scaling allows each key to potentially receive the highest attention, and prevents keys from being "un-select-able". We show empirically that Transformers do indeed benefit from these properties of LayeNorm in general language modeling and even in computing simple functions such as "majority". Our code is available at https://github.com/tech-srl/layer_norm_expressivity_role .
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
Neural Generation for Czech: Data and Baselines
We present the first dataset targeted at end-to-end NLG in Czech in the restaurant domain, along with several strong baseline models using the sequence-to-sequence approach. While non-English NLG is under-explored in general, Czech, as a morphologically rich language, makes the task even harder: Since Czech requires inflecting named entities, delexicalization or copy mechanisms do not work out-of-the-box and lexicalizing the generated outputs is non-trivial. In our experiments, we present two different approaches to this this problem: (1) using a neural language model to select the correct inflected form while lexicalizing, (2) a two-step generation setup: our sequence-to-sequence model generates an interleaved sequence of lemmas and morphological tags, which are then inflected by a morphological generator.
Taming Contrast Maximization for Learning Sequential, Low-latency, Event-based Optical Flow
Event cameras have recently gained significant traction since they open up new avenues for low-latency and low-power solutions to complex computer vision problems. To unlock these solutions, it is necessary to develop algorithms that can leverage the unique nature of event data. However, the current state-of-the-art is still highly influenced by the frame-based literature, and usually fails to deliver on these promises. In this work, we take this into consideration and propose a novel self-supervised learning pipeline for the sequential estimation of event-based optical flow that allows for the scaling of the models to high inference frequencies. At its core, we have a continuously-running stateful neural model that is trained using a novel formulation of contrast maximization that makes it robust to nonlinearities and varying statistics in the input events. Results across multiple datasets confirm the effectiveness of our method, which establishes a new state of the art in terms of accuracy for approaches trained or optimized without ground truth.
A Controlled Study on Long Context Extension and Generalization in LLMs
Broad textual understanding and in-context learning require language models that utilize full document contexts. Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts. However, owing to differences in data and model classes, it has been challenging to compare these approaches, leading to uncertainty as to how to evaluate long-context performance and whether it differs from standard evaluation. We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data. Our study yields several insights into long-context behavior. First, we reaffirm the critical role of perplexity as a general-purpose performance indicator even in longer-context tasks. Second, we find that current approximate attention methods systematically underperform across long-context tasks. Finally, we confirm that exact fine-tuning based methods are generally effective within the range of their extension, whereas extrapolation remains challenging. All codebases, models, and checkpoints will be made available open-source, promoting transparency and facilitating further research in this critical area of AI development.
ClinicalBench: Can LLMs Beat Traditional ML Models in Clinical Prediction?
Large Language Models (LLMs) hold great promise to revolutionize current clinical systems for their superior capacities on medical text processing tasks and medical licensing exams. Meanwhile, traditional ML models such as SVM and XGBoost have still been mainly adopted in clinical prediction tasks. An emerging question is Can LLMs beat traditional ML models in clinical prediction? Thus, we build a new benchmark ClinicalBench to comprehensively study the clinical predictive modeling capacities of both general-purpose and medical LLMs, and compare them with traditional ML models. ClinicalBench embraces three common clinical prediction tasks, two databases, 14 general-purpose LLMs, 8 medical LLMs, and 11 traditional ML models. Through extensive empirical investigation, we discover that both general-purpose and medical LLMs, even with different model scales, diverse prompting or fine-tuning strategies, still cannot beat traditional ML models in clinical prediction yet, shedding light on their potential deficiency in clinical reasoning and decision-making. We call for caution when practitioners adopt LLMs in clinical applications. ClinicalBench can be utilized to bridge the gap between LLMs' development for healthcare and real-world clinical practice.
OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in various multimodal tasks. However, their potential in the medical domain remains largely unexplored. A significant challenge arises from the scarcity of diverse medical images spanning various modalities and anatomical regions, which is essential in real-world medical applications. To solve this problem, in this paper, we introduce OmniMedVQA, a novel comprehensive medical Visual Question Answering (VQA) benchmark. This benchmark is collected from 75 different medical datasets, including 12 different modalities and covering more than 20 distinct anatomical regions. Importantly, all images in this benchmark are sourced from authentic medical scenarios, ensuring alignment with the requirements of the medical field and suitability for evaluating LVLMs. Through our extensive experiments, we have found that existing LVLMs struggle to address these medical VQA problems effectively. Moreover, what surprises us is that medical-specialized LVLMs even exhibit inferior performance to those general-domain models, calling for a more versatile and robust LVLM in the biomedical field. The evaluation results not only reveal the current limitations of LVLM in understanding real medical images but also highlight our dataset's significance. Our dataset will be made publicly available.
GigaCheck: Detecting LLM-generated Content
With the increasing quality and spread of LLM-based assistants, the amount of LLM-generated content is growing rapidly. In many cases and tasks, such texts are already indistinguishable from those written by humans, and the quality of generation tends to only increase. At the same time, detection methods are developing more slowly, making it challenging to prevent misuse of generative AI technologies. In this work, we investigate the task of generated text detection by proposing the GigaCheck. Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts. For the first task, our approach utilizes a general-purpose LLM, leveraging its extensive language abilities to fine-tune efficiently for the downstream task of LLM-generated text detection, achieving high performance even with limited data. For the second task, we propose a novel approach that combines computer vision and natural language processing techniques. Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize AI-generated intervals within text. We evaluate the GigaCheck on five classification datasets with English texts and three datasets designed for Human-Machine collaborative text analysis. Our results demonstrate that GigaCheck outperforms previous methods, even in out-of-distribution settings, establishing a strong baseline across all datasets.
Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents
For safety reasons, large language models (LLMs) are trained to refuse harmful user instructions, such as assisting dangerous activities. We study an open question in this work: does the desired safety refusal, typically enforced in chat contexts, generalize to non-chat and agentic use cases? Unlike chatbots, LLM agents equipped with general-purpose tools, such as web browsers and mobile devices, can directly influence the real world, making it even more crucial to refuse harmful instructions. In this work, we primarily focus on red-teaming browser agents, LLMs that manipulate information via web browsers. To this end, we introduce Browser Agent Red teaming Toolkit (BrowserART), a comprehensive test suite designed specifically for red-teaming browser agents. BrowserART is consist of 100 diverse browser-related harmful behaviors (including original behaviors and ones sourced from HarmBench [Mazeika et al., 2024] and AirBench 2024 [Zeng et al., 2024b]) across both synthetic and real websites. Our empirical study on state-of-the-art browser agents reveals that, while the backbone LLM refuses harmful instructions as a chatbot, the corresponding agent does not. Moreover, attack methods designed to jailbreak refusal-trained LLMs in the chat settings transfer effectively to browser agents. With human rewrites, GPT-4o and o1-preview-based browser agents attempted 98 and 63 harmful behaviors (out of 100), respectively. We publicly release BrowserART and call on LLM developers, policymakers, and agent developers to collaborate on improving agent safety
Annotator: A Generic Active Learning Baseline for LiDAR Semantic Segmentation
Active learning, a label-efficient paradigm, empowers models to interactively query an oracle for labeling new data. In the realm of LiDAR semantic segmentation, the challenges stem from the sheer volume of point clouds, rendering annotation labor-intensive and cost-prohibitive. This paper presents Annotator, a general and efficient active learning baseline, in which a voxel-centric online selection strategy is tailored to efficiently probe and annotate the salient and exemplar voxel girds within each LiDAR scan, even under distribution shift. Concretely, we first execute an in-depth analysis of several common selection strategies such as Random, Entropy, Margin, and then develop voxel confusion degree (VCD) to exploit the local topology relations and structures of point clouds. Annotator excels in diverse settings, with a particular focus on active learning (AL), active source-free domain adaptation (ASFDA), and active domain adaptation (ADA). It consistently delivers exceptional performance across LiDAR semantic segmentation benchmarks, spanning both simulation-to-real and real-to-real scenarios. Surprisingly, Annotator exhibits remarkable efficiency, requiring significantly fewer annotations, e.g., just labeling five voxels per scan in the SynLiDAR-to-SemanticKITTI task. This results in impressive performance, achieving 87.8% fully-supervised performance under AL, 88.5% under ASFDA, and 94.4% under ADA. We envision that Annotator will offer a simple, general, and efficient solution for label-efficient 3D applications. Project page: https://binhuixie.github.io/annotator-web
Meta-trained agents implement Bayes-optimal agents
Memory-based meta-learning is a powerful technique to build agents that adapt fast to any task within a target distribution. A previous theoretical study has argued that this remarkable performance is because the meta-training protocol incentivises agents to behave Bayes-optimally. We empirically investigate this claim on a number of prediction and bandit tasks. Inspired by ideas from theoretical computer science, we show that meta-learned and Bayes-optimal agents not only behave alike, but they even share a similar computational structure, in the sense that one agent system can approximately simulate the other. Furthermore, we show that Bayes-optimal agents are fixed points of the meta-learning dynamics. Our results suggest that memory-based meta-learning might serve as a general technique for numerically approximating Bayes-optimal agents - that is, even for task distributions for which we currently don't possess tractable models.
Precise Parameter Localization for Textual Generation in Diffusion Models
Novel diffusion models can synthesize photo-realistic images with integrated high-quality text. Surprisingly, we demonstrate through attention activation patching that only less than 1% of diffusion models' parameters, all contained in attention layers, influence the generation of textual content within the images. Building on this observation, we improve textual generation efficiency and performance by targeting cross and joint attention layers of diffusion models. We introduce several applications that benefit from localizing the layers responsible for textual content generation. We first show that a LoRA-based fine-tuning solely of the localized layers enhances, even more, the general text-generation capabilities of large diffusion models while preserving the quality and diversity of the diffusion models' generations. Then, we demonstrate how we can use the localized layers to edit textual content in generated images. Finally, we extend this idea to the practical use case of preventing the generation of toxic text in a cost-free manner. In contrast to prior work, our localization approach is broadly applicable across various diffusion model architectures, including U-Net (e.g., LDM and SDXL) and transformer-based (e.g., DeepFloyd IF and Stable Diffusion 3), utilizing diverse text encoders (e.g., from CLIP to the large language models like T5). Project page available at https://t2i-text-loc.github.io/.
ICE-GRT: Instruction Context Enhancement by Generative Reinforcement based Transformers
The emergence of Large Language Models (LLMs) such as ChatGPT and LLaMA encounter limitations in domain-specific tasks, with these models often lacking depth and accuracy in specialized areas, and exhibiting a decrease in general capabilities when fine-tuned, particularly analysis ability in small sized models. To address these gaps, we introduce ICE-GRT, utilizing Reinforcement Learning from Human Feedback (RLHF) grounded in Proximal Policy Optimization (PPO), demonstrating remarkable ability in in-domain scenarios without compromising general task performance. Our exploration of ICE-GRT highlights its understanding and reasoning ability to not only generate robust answers but also to provide detailed analyses of the reasons behind the answer. This capability marks a significant progression beyond the scope of Supervised Fine-Tuning models. The success of ICE-GRT is dependent on several crucial factors, including Appropriate Data, Reward Size Scaling, KL-Control, Advantage Normalization, etc. The ICE-GRT model exhibits state-of-the-art performance in domain-specific tasks and across 12 general Language tasks against equivalent size and even larger size LLMs, highlighting the effectiveness of our approach. We provide a comprehensive analysis of the ICE-GRT, underscoring the significant advancements it brings to the field of LLM.
μ-Bench: A Vision-Language Benchmark for Microscopy Understanding
Recent advances in microscopy have enabled the rapid generation of terabytes of image data in cell biology and biomedical research. Vision-language models (VLMs) offer a promising solution for large-scale biological image analysis, enhancing researchers' efficiency, identifying new image biomarkers, and accelerating hypothesis generation and scientific discovery. However, there is a lack of standardized, diverse, and large-scale vision-language benchmarks to evaluate VLMs' perception and cognition capabilities in biological image understanding. To address this gap, we introduce {\mu}-Bench, an expert-curated benchmark encompassing 22 biomedical tasks across various scientific disciplines (biology, pathology), microscopy modalities (electron, fluorescence, light), scales (subcellular, cellular, tissue), and organisms in both normal and abnormal states. We evaluate state-of-the-art biomedical, pathology, and general VLMs on {\mu}-Bench and find that: i) current models struggle on all categories, even for basic tasks such as distinguishing microscopy modalities; ii) current specialist models fine-tuned on biomedical data often perform worse than generalist models; iii) fine-tuning in specific microscopy domains can cause catastrophic forgetting, eroding prior biomedical knowledge encoded in their base model. iv) weight interpolation between fine-tuned and pre-trained models offers one solution to forgetting and improves general performance across biomedical tasks. We release {\mu}-Bench under a permissive license to accelerate the research and development of microscopy foundation models.
Looped Transformers as Programmable Computers
We present a framework for using transformer networks as universal computers by programming them with specific weights and placing them in a loop. Our input sequence acts as a punchcard, consisting of instructions and memory for data read/writes. We demonstrate that a constant number of encoder layers can emulate basic computing blocks, including embedding edit operations, non-linear functions, function calls, program counters, and conditional branches. Using these building blocks, we emulate a small instruction-set computer. This allows us to map iterative algorithms to programs that can be executed by a looped, 13-layer transformer. We show how this transformer, instructed by its input, can emulate a basic calculator, a basic linear algebra library, and in-context learning algorithms that employ backpropagation. Our work highlights the versatility of the attention mechanism, and demonstrates that even shallow transformers can execute full-fledged, general-purpose programs.
Can a large language model be a gaslighter?
Large language models (LLMs) have gained human trust due to their capabilities and helpfulness. However, this in turn may allow LLMs to affect users' mindsets by manipulating language. It is termed as gaslighting, a psychological effect. In this work, we aim to investigate the vulnerability of LLMs under prompt-based and fine-tuning-based gaslighting attacks. Therefore, we propose a two-stage framework DeepCoG designed to: 1) elicit gaslighting plans from LLMs with the proposed DeepGaslighting prompting template, and 2) acquire gaslighting conversations from LLMs through our Chain-of-Gaslighting method. The gaslighting conversation dataset along with a corresponding safe dataset is applied to fine-tuning-based attacks on open-source LLMs and anti-gaslighting safety alignment on these LLMs. Experiments demonstrate that both prompt-based and fine-tuning-based attacks transform three open-source LLMs into gaslighters. In contrast, we advanced three safety alignment strategies to strengthen (by 12.05%) the safety guardrail of LLMs. Our safety alignment strategies have minimal impacts on the utility of LLMs. Empirical studies indicate that an LLM may be a potential gaslighter, even if it passed the harmfulness test on general dangerous queries.
Knowledge Unlearning for Mitigating Privacy Risks in Language Models
Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for language models has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply performing gradient ascent on target token sequences is effective at forgetting them with little to no degradation of general language modeling performances for larger LMs; it sometimes even substantially improves the underlying LM with just a few iterations. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with a previous data preprocessing method and a decoding method known to mitigate privacy risks for LMs, we show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being much more efficient and robust. We release the code and dataset needed to replicate our results at https://github.com/joeljang/knowledge-unlearning.
FILM: Following Instructions in Language with Modular Methods
Recent methods for embodied instruction following are typically trained end-to-end using imitation learning. This often requires the use of expert trajectories and low-level language instructions. Such approaches assume that neural states will integrate multimodal semantics to perform state tracking, building spatial memory, exploration, and long-term planning. In contrast, we propose a modular method with structured representations that (1) builds a semantic map of the scene and (2) performs exploration with a semantic search policy, to achieve the natural language goal. Our modular method achieves SOTA performance (24.46 %) with a substantial (8.17 % absolute) gap from previous work while using less data by eschewing both expert trajectories and low-level instructions. Leveraging low-level language, however, can further increase our performance (26.49 %). Our findings suggest that an explicit spatial memory and a semantic search policy can provide a stronger and more general representation for state-tracking and guidance, even in the absence of expert trajectories or low-level instructions.
Neural Hybrid Automata: Learning Dynamics with Multiple Modes and Stochastic Transitions
Effective control and prediction of dynamical systems often require appropriate handling of continuous-time and discrete, event-triggered processes. Stochastic hybrid systems (SHSs), common across engineering domains, provide a formalism for dynamical systems subject to discrete, possibly stochastic, state jumps and multi-modal continuous-time flows. Despite the versatility and importance of SHSs across applications, a general procedure for the explicit learning of both discrete events and multi-mode continuous dynamics remains an open problem. This work introduces Neural Hybrid Automata (NHAs), a recipe for learning SHS dynamics without a priori knowledge on the number of modes and inter-modal transition dynamics. NHAs provide a systematic inference method based on normalizing flows, neural differential equations and self-supervision. We showcase NHAs on several tasks, including mode recovery and flow learning in systems with stochastic transitions, and end-to-end learning of hierarchical robot controllers.
VLTinT: Visual-Linguistic Transformer-in-Transformer for Coherent Video Paragraph Captioning
Video paragraph captioning aims to generate a multi-sentence description of an untrimmed video with several temporal event locations in coherent storytelling. Following the human perception process, where the scene is effectively understood by decomposing it into visual (e.g. human, animal) and non-visual components (e.g. action, relations) under the mutual influence of vision and language, we first propose a visual-linguistic (VL) feature. In the proposed VL feature, the scene is modeled by three modalities including (i) a global visual environment; (ii) local visual main agents; (iii) linguistic scene elements. We then introduce an autoregressive Transformer-in-Transformer (TinT) to simultaneously capture the semantic coherence of intra- and inter-event contents within a video. Finally, we present a new VL contrastive loss function to guarantee learnt embedding features are matched with the captions semantics. Comprehensive experiments and extensive ablation studies on ActivityNet Captions and YouCookII datasets show that the proposed Visual-Linguistic Transformer-in-Transform (VLTinT) outperforms prior state-of-the-art methods on accuracy and diversity. Source code is made publicly available at: https://github.com/UARK-AICV/VLTinT.
SALMONN: Towards Generic Hearing Abilities for Large Language Models
Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning etc. SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning etc. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \url{https://github.com/bytedance/SALMONN}, and the training code and model checkpoints will be released upon acceptance.
YAYI 2: Multilingual Open-Source Large Language Models
As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.
Mistral-C2F: Coarse to Fine Actor for Analytical and Reasoning Enhancement in RLHF and Effective-Merged LLMs
Despite the advances in Large Language Models (LLMs), exemplified by models like GPT-4 and Claude, smaller-scale LLMs such as Llama and Mistral often struggle with generating in-depth and coherent dialogues. This paper presents a novel two-step Coarse-to-Fine Actor model to address the inherent limitations in conversational and analytical capabilities of small-sized LLMs. Our approach begins with the Policy-based Coarse Actor, employing a technique we term "Continuous Maximization". The Coarse Actor establishes an enhanced, knowledge-rich pool adept at aligning with human preference styles in analysis and reasoning. Through the RLHF process, it employs Continuous Maximization, a strategy that dynamically and adaptively extends the output length limit, enabling the generation of more detailed and analytical content. Subsequently, the Fine Actor refines this analytical content, addressing the generation of excessively redundant information from the Coarse Actor. We introduce a "Knowledge Residue Merger" approach, refining the content from the Coarse Actor and merging it with an existing Instruction model to improve quality, correctness, and reduce redundancies. We applied our methodology to the popular Mistral model, creating Mistral-C2F, which has demonstrated exceptional performance across 11 general language tasks and the MT-Bench Dialogue task, outperforming similar-scale models and even larger models with 13B and 30B parameters. Our model has significantly improved conversational and analytical reasoning abilities.
One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention
Recent works have empirically analyzed in-context learning and shown that transformers trained on synthetic linear regression tasks can learn to implement ridge regression, which is the Bayes-optimal predictor, given sufficient capacity [Aky\"urek et al., 2023], while one-layer transformers with linear self-attention and no MLP layer will learn to implement one step of gradient descent (GD) on a least-squares linear regression objective [von Oswald et al., 2022]. However, the theory behind these observations remains poorly understood. We theoretically study transformers with a single layer of linear self-attention, trained on synthetic noisy linear regression data. First, we mathematically show that when the covariates are drawn from a standard Gaussian distribution, the one-layer transformer which minimizes the pre-training loss will implement a single step of GD on the least-squares linear regression objective. Then, we find that changing the distribution of the covariates and weight vector to a non-isotropic Gaussian distribution has a strong impact on the learned algorithm: the global minimizer of the pre-training loss now implements a single step of pre-conditioned GD. However, if only the distribution of the responses is changed, then this does not have a large effect on the learned algorithm: even when the response comes from a more general family of nonlinear functions, the global minimizer of the pre-training loss still implements a single step of GD on a least-squares linear regression objective.
Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images
Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/
TOMG-Bench: Evaluating LLMs on Text-based Open Molecule Generation
In this paper, we propose Text-based Open Molecule Generation Benchmark (TOMG-Bench), the first benchmark to evaluate the open-domain molecule generation capability of LLMs. TOMG-Bench encompasses a dataset of three major tasks: molecule editing (MolEdit), molecule optimization (MolOpt), and customized molecule generation (MolCustom). Each task further contains three subtasks, with each subtask comprising 5,000 test samples. Given the inherent complexity of open molecule generation, we have also developed an automated evaluation system that helps measure both the quality and the accuracy of the generated molecules. Our comprehensive benchmarking of 25 LLMs reveals the current limitations and potential areas for improvement in text-guided molecule discovery. Furthermore, with the assistance of OpenMolIns, a specialized instruction tuning dataset proposed for solving challenges raised by TOMG-Bench, Llama3.1-8B could outperform all the open-source general LLMs, even surpassing GPT-3.5-turbo by 46.5\% on TOMG-Bench. Our codes and datasets are available through https://github.com/phenixace/TOMG-Bench.
Can Editing LLMs Inject Harm?
Knowledge editing techniques have been increasingly adopted to efficiently correct the false or outdated knowledge in Large Language Models (LLMs), due to the high cost of retraining from scratch. Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection. Then, we find that editing attacks can inject both types of misinformation into LLMs, and the effectiveness is particularly high for commonsense misinformation injection. For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a high bias increase in general outputs of LLMs, which are even highly irrelevant to the injected sentence, indicating a catastrophic impact on the overall fairness of LLMs. Then, we further illustrate the high stealthiness of editing attacks, measured by their impact on the general knowledge and reasoning capacities of LLMs, and show the hardness of defending editing attacks with empirical evidence. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs.
Machine Learners Should Acknowledge the Legal Implications of Large Language Models as Personal Data
Does GPT know you? The answer depends on your level of public recognition; however, if your information was available on a website, the answer is probably yes. All Large Language Models (LLMs) memorize training data to some extent. If an LLM training corpus includes personal data, it also memorizes personal data. Developing an LLM typically involves processing personal data, which falls directly within the scope of data protection laws. If a person is identified or identifiable, the implications are far-reaching: the AI system is subject to EU General Data Protection Regulation requirements even after the training phase is concluded. To back our arguments: (1.) We reiterate that LLMs output training data at inference time, be it verbatim or in generalized form. (2.) We show that some LLMs can thus be considered personal data on their own. This triggers a cascade of data protection implications such as data subject rights, including rights to access, rectification, or erasure. These rights extend to the information embedded with-in the AI model. (3.) This paper argues that machine learning researchers must acknowledge the legal implications of LLMs as personal data throughout the full ML development lifecycle, from data collection and curation to model provision on, e.g., GitHub or Hugging Face. (4.) We propose different ways for the ML research community to deal with these legal implications. Our paper serves as a starting point for improving the alignment between data protection law and the technical capabilities of LLMs. Our findings underscore the need for more interaction between the legal domain and the ML community.
Foundation Policies with Hilbert Representations
Unsupervised and self-supervised objectives, such as next token prediction, have enabled pre-training generalist models from large amounts of unlabeled data. In reinforcement learning (RL), however, finding a truly general and scalable unsupervised pre-training objective for generalist policies from offline data remains a major open question. While a number of methods have been proposed to enable generic self-supervised RL, based on principles such as goal-conditioned RL, behavioral cloning, and unsupervised skill learning, such methods remain limited in terms of either the diversity of the discovered behaviors, the need for high-quality demonstration data, or the lack of a clear prompting or adaptation mechanism for downstream tasks. In this work, we propose a novel unsupervised framework to pre-train generalist policies that capture diverse, optimal, long-horizon behaviors from unlabeled offline data such that they can be quickly adapted to any arbitrary new tasks in a zero-shot manner. Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment, and then to span this learned latent space with directional movements, which enables various zero-shot policy "prompting" schemes for downstream tasks. Through our experiments on simulated robotic locomotion and manipulation benchmarks, we show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion, even often outperforming prior methods designed specifically for each setting. Our code and videos are available at https://seohong.me/projects/hilp/
Quilt-1M: One Million Image-Text Pairs for Histopathology
Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate Quilt: a large-scale vision-language dataset consisting of 768,826 image and text pairs. Quilt was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around 200K samples. We combine Quilt with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: Quilt-1M, with 1M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of Quilt-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across 13 diverse patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasks.
Annotated History of Modern AI and Deep Learning
Machine learning is the science of credit assignment: finding patterns in observations that predict the consequences of actions and help to improve future performance. Credit assignment is also required for human understanding of how the world works, not only for individuals navigating daily life, but also for academic professionals like historians who interpret the present in light of past events. Here I focus on the history of modern artificial intelligence (AI) which is dominated by artificial neural networks (NNs) and deep learning, both conceptually closer to the old field of cybernetics than to what's been called AI since 1956 (e.g., expert systems and logic programming). A modern history of AI will emphasize breakthroughs outside of the focus of traditional AI text books, in particular, mathematical foundations of today's NNs such as the chain rule (1676), the first NNs (linear regression, circa 1800), and the first working deep learners (1965-). From the perspective of 2022, I provide a timeline of the -- in hindsight -- most important relevant events in the history of NNs, deep learning, AI, computer science, and mathematics in general, crediting those who laid foundations of the field. The text contains numerous hyperlinks to relevant overview sites from my AI Blog. It supplements my previous deep learning survey (2015) which provides hundreds of additional references. Finally, to round it off, I'll put things in a broader historic context spanning the time since the Big Bang until when the universe will be many times older than it is now.
DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation
Recently, GAN inversion methods combined with Contrastive Language-Image Pretraining (CLIP) enables zero-shot image manipulation guided by text prompts. However, their applications to diverse real images are still difficult due to the limited GAN inversion capability. Specifically, these approaches often have difficulties in reconstructing images with novel poses, views, and highly variable contents compared to the training data, altering object identity, or producing unwanted image artifacts. To mitigate these problems and enable faithful manipulation of real images, we propose a novel method, dubbed DiffusionCLIP, that performs text-driven image manipulation using diffusion models. Based on full inversion capability and high-quality image generation power of recent diffusion models, our method performs zero-shot image manipulation successfully even between unseen domains and takes another step towards general application by manipulating images from a widely varying ImageNet dataset. Furthermore, we propose a novel noise combination method that allows straightforward multi-attribute manipulation. Extensive experiments and human evaluation confirmed robust and superior manipulation performance of our methods compared to the existing baselines. Code is available at https://github.com/gwang-kim/DiffusionCLIP.git.
Do We Need Domain-Specific Embedding Models? An Empirical Investigation
Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advancements in Large Language Models (LLMs) have further enhanced the performance of embedding models, which are trained on massive amounts of text covering almost every domain. These models are often benchmarked on general-purpose datasets like Massive Text Embedding Benchmark (MTEB), where they demonstrate superior performance. However, a critical question arises: Is the development of domain-specific embedding models necessary when general-purpose models are trained on vast corpora that already include specialized domain texts? In this paper, we empirically investigate this question, choosing the finance domain as an example. We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a counterpart to MTEB that consists of financial domain-specific text datasets. We evaluate the performance of seven state-of-the-art embedding models on FinMTEB and observe a significant performance drop compared to their performance on MTEB. To account for the possibility that this drop is driven by FinMTEB's higher complexity, we propose four measures to quantify dataset complexity and control for this factor in our analysis. Our analysis provides compelling evidence that state-of-the-art embedding models struggle to capture domain-specific linguistic and semantic patterns, even when trained on large general-purpose corpora. This study sheds light on the necessity of developing domain-specific embedding models in the LLM era, offering valuable insights for researchers and practitioners.
SoMeLVLM: A Large Vision Language Model for Social Media Processing
The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
Transformers can optimally learn regression mixture models
Mixture models arise in many regression problems, but most methods have seen limited adoption partly due to these algorithms' highly-tailored and model-specific nature. On the other hand, transformers are flexible, neural sequence models that present the intriguing possibility of providing general-purpose prediction methods, even in this mixture setting. In this work, we investigate the hypothesis that transformers can learn an optimal predictor for mixtures of regressions. We construct a generative process for a mixture of linear regressions for which the decision-theoretic optimal procedure is given by data-driven exponential weights on a finite set of parameters. We observe that transformers achieve low mean-squared error on data generated via this process. By probing the transformer's output at inference time, we also show that transformers typically make predictions that are close to the optimal predictor. Our experiments also demonstrate that transformers can learn mixtures of regressions in a sample-efficient fashion and are somewhat robust to distribution shifts. We complement our experimental observations by proving constructively that the decision-theoretic optimal procedure is indeed implementable by a transformer.
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when adopted by all agents and run independently in a decentralized fashion, lead to no-regret for each player, analogous to celebrated convergence results in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markovian policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution this problem, both from a computational and statistical perspective. We show that: - Under the widely-believed assumption that PPAD-hard problems cannot be solved in polynomial time, there is no polynomial-time algorithm that attains no-regret in general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer and the number of players is a small constant. - When the game is unknown, no algorithm, regardless of computational efficiency, can achieve no-regret without observing a number of episodes that is exponential in the number of players. Perhaps surprisingly, our lower bounds hold even for seemingly easier setting in which all agents are controlled by a a centralized algorithm. They are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is sparse in the sense that it can be represented as a mixture of a small number of product policies. The crux of our approach is a novel application of aggregation techniques from online learning, whereby we show that any algorithm for the SparseCCE problem can be used to compute approximate Nash equilibria for non-zero sum normal-form games.
Second-order regression models exhibit progressive sharpening to the edge of stability
Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios
This paper introduces RuleArena, a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning. Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions that demand long-context understanding, logical reasoning, and accurate mathematical computation. Two key attributes distinguish RuleArena from traditional rule-based reasoning benchmarks: (1) it extends beyond standard first-order logic representations, and (2) it is grounded in authentic, practical scenarios, providing insights into the suitability and reliability of LLMs for real-world applications. Our findings reveal several notable limitations in LLMs: (1) they struggle to identify and apply the appropriate rules, frequently becoming confused by similar but distinct regulations, (2) they cannot consistently perform accurate mathematical computations, even when they correctly identify the relevant rules, and (3) in general, they perform poorly in the benchmark. These results highlight significant challenges in advancing LLMs' rule-guided reasoning capabilities in real-life applications.
Matrix Calculus (for Machine Learning and Beyond)
This course, intended for undergraduates familiar with elementary calculus and linear algebra, introduces the extension of differential calculus to functions on more general vector spaces, such as functions that take as input a matrix and return a matrix inverse or factorization, derivatives of ODE solutions, and even stochastic derivatives of random functions. It emphasizes practical computational applications, such as large-scale optimization and machine learning, where derivatives must be re-imagined in order to be propagated through complicated calculations. The class also discusses efficiency concerns leading to "adjoint" or "reverse-mode" differentiation (a.k.a. "backpropagation"), and gives a gentle introduction to modern automatic differentiation (AD) techniques.
ComCLIP: Training-Free Compositional Image and Text Matching
Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-lanaguage pretrained models like CLIP to compositional image and text matching -- a more challenging image and text matching task requiring the model understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel \textit{training-free} compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: SVO, ComVG, Winoground, and VL-checklist, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the \textit{zero-shot} inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.
EA-VTR: Event-Aware Video-Text Retrieval
Understanding the content of events occurring in the video and their inherent temporal logic is crucial for video-text retrieval. However, web-crawled pre-training datasets often lack sufficient event information, and the widely adopted video-level cross-modal contrastive learning also struggles to capture detailed and complex video-text event alignment. To address these challenges, we make improvements from both data and model perspectives. In terms of pre-training data, we focus on supplementing the missing specific event content and event temporal transitions with the proposed event augmentation strategies. Based on the event-augmented data, we construct a novel Event-Aware Video-Text Retrieval model, ie, EA-VTR, which achieves powerful video-text retrieval ability through superior video event awareness. EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment, ultimately enhancing the comprehensive understanding of video events. Our method not only significantly outperforms existing approaches on multiple datasets for Text-to-Video Retrieval and Video Action Recognition tasks, but also demonstrates superior event content perceive ability on Multi-event Video-Text Retrieval and Video Moment Retrieval tasks, as well as outstanding event temporal logic understanding ability on Test of Time task.
Temporal Event Stereo via Joint Learning with Stereoscopic Flow
Event cameras are dynamic vision sensors inspired by the biological retina, characterized by their high dynamic range, high temporal resolution, and low power consumption. These features make them capable of perceiving 3D environments even in extreme conditions. Event data is continuous across the time dimension, which allows a detailed description of each pixel's movements. To fully utilize the temporally dense and continuous nature of event cameras, we propose a novel temporal event stereo, a framework that continuously uses information from previous time steps. This is accomplished through the simultaneous training of an event stereo matching network alongside stereoscopic flow, a new concept that captures all pixel movements from stereo cameras. Since obtaining ground truth for optical flow during training is challenging, we propose a method that uses only disparity maps to train the stereoscopic flow. The performance of event-based stereo matching is enhanced by temporally aggregating information using the flows. We have achieved state-of-the-art performance on the MVSEC and the DSEC datasets. The method is computationally efficient, as it stacks previous information in a cascading manner. The code is available at https://github.com/mickeykang16/TemporalEventStereo.
General Object Foundation Model for Images and Videos at Scale
We present GLEE in this work, an object-level foundation model for locating and identifying objects in images and videos. Through a unified framework, GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario for various object perception tasks. Adopting a cohesive learning strategy, GLEE acquires knowledge from diverse data sources with varying supervision levels to formulate general object representations, excelling in zero-shot transfer to new data and tasks. Specifically, we employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks while maintaining state-of-the-art performance. Demonstrated through extensive training on over five million images from diverse benchmarks, GLEE exhibits remarkable versatility and improved generalization performance, efficiently tackling downstream tasks without the need for task-specific adaptation. By integrating large volumes of automatically labeled data, we further enhance its zero-shot generalization capabilities. Additionally, GLEE is capable of being integrated into Large Language Models, serving as a foundational model to provide universal object-level information for multi-modal tasks. We hope that the versatility and universality of our method will mark a significant step in the development of efficient visual foundation models for AGI systems. The model and code will be released at https://glee-vision.github.io .
General Preference Modeling with Preference Representations for Aligning Language Models
Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. Although supervised pair preference models (PairPM) can express general preferences, their implementation is highly ad-hoc and cannot guarantee a consistent preference probability of compared pairs. Additionally, they impose high computational costs due to their quadratic query complexity when comparing multiple responses. In this paper, we introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback. Experimental results show that our General Preference representation model (GPM) outperforms the BT reward model on the RewardBench benchmark with a margin of up to 5.6% and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0 and MT-Bench, following the language model post-training with GPO and our general preference model, reveal substantial performance improvements with margins up to 9.3%. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.
General Reasoning Requires Learning to Reason from the Get-go
Large Language Models (LLMs) have demonstrated impressive real-world utility, exemplifying artificial useful intelligence (AUI). However, their ability to reason adaptively and robustly -- the hallmarks of artificial general intelligence (AGI) -- remains fragile. While LLMs seemingly succeed in commonsense reasoning, programming, and mathematics, they struggle to generalize algorithmic understanding across novel contexts. Our experiments with algorithmic tasks in esoteric programming languages reveal that LLM's reasoning overfits to the training data and is limited in its transferability. We hypothesize that the core issue underlying such limited transferability is the coupling of reasoning and knowledge in LLMs. To transition from AUI to AGI, we propose disentangling knowledge and reasoning through three key directions: (1) pretaining to reason using RL from scratch as an alternative to the widely used next-token prediction pretraining, (2) using a curriculum of synthetic tasks to ease the learning of a reasoning prior for RL that can then be transferred to natural language tasks, and (3) learning more generalizable reasoning functions using a small context window to reduce exploiting spurious correlations between tokens. Such a reasoning system coupled with a trained retrieval system and a large external memory bank as a knowledge store can overcome several limitations of existing architectures at learning to reason in novel scenarios.
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
General-purpose language models that can solve various language-domain tasks have emerged driven by the pre-training and instruction-tuning pipeline. However, building general-purpose vision-language models is challenging due to the increased task discrepancy introduced by the additional visual input. Although vision-language pre-training has been widely studied, vision-language instruction tuning remains relatively less explored. In this paper, we conduct a systematic and comprehensive study on vision-language instruction tuning based on the pre-trained BLIP-2 models. We gather a wide variety of 26 publicly available datasets, transform them into instruction tuning format and categorize them into two clusters for held-in instruction tuning and held-out zero-shot evaluation. Additionally, we introduce instruction-aware visual feature extraction, a crucial method that enables the model to extract informative features tailored to the given instruction. The resulting InstructBLIP models achieve state-of-the-art zero-shot performance across all 13 held-out datasets, substantially outperforming BLIP-2 and the larger Flamingo. Our models also lead to state-of-the-art performance when finetuned on individual downstream tasks (e.g., 90.7% accuracy on ScienceQA IMG). Furthermore, we qualitatively demonstrate the advantages of InstructBLIP over concurrent multimodal models. All InstructBLIP models have been open-sourced at https://github.com/salesforce/LAVIS/tree/main/projects/instructblip.
Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey.
An Efficient General-Purpose Modular Vision Model via Multi-Task Heterogeneous Training
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently. Despite considerable progress in multi-task learning, most efforts focus on learning from multi-label data: a single image set with multiple task labels. Such multi-label data sets are rare, small, and expensive. We say heterogeneous to refer to image sets with different task labels, or to combinations of single-task datasets. Few have explored training on such heterogeneous datasets. General-purpose vision models are still dominated by single-task pretraining, and it remains unclear how to scale up multi-task models by leveraging mainstream vision datasets designed for different purposes. The challenges lie in managing large intrinsic differences among vision tasks, including data distribution, architectures, task-specific modules, dataset scales, and sampling strategies. To address these challenges, we propose to modify and scale up mixture-of-experts (MoE) vision transformers, so that they can simultaneously learn classification, detection, and segmentation on diverse mainstream vision datasets including ImageNet, COCO, and ADE20K. Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks. Due to its emergent modularity, this general-purpose model decomposes into high-performing components, efficiently adapting to downstream tasks. We can fine-tune it with fewer training parameters, fewer model parameters, and less computation. Additionally, its modularity allows for easy expansion in continual-learning-without-forgetting scenarios. Finally, these functions can be controlled and combined to meet various demands of downstream tasks.
General-Purpose In-Context Learning by Meta-Learning Transformers
Modern machine learning requires system designers to specify aspects of the learning pipeline, such as losses, architectures, and optimizers. Meta-learning, or learning-to-learn, instead aims to learn those aspects, and promises to unlock greater capabilities with less manual effort. One particularly ambitious goal of meta-learning is to train general-purpose in-context learning algorithms from scratch, using only black-box models with minimal inductive bias. Such a model takes in training data, and produces test-set predictions across a wide range of problems, without any explicit definition of an inference model, training loss, or optimization algorithm. In this paper we show that Transformers and other black-box models can be meta-trained to act as general-purpose in-context learners. We characterize transitions between algorithms that generalize, algorithms that memorize, and algorithms that fail to meta-train at all, induced by changes in model size, number of tasks, and meta-optimization. We further show that the capabilities of meta-trained algorithms are bottlenecked by the accessible state size (memory) determining the next prediction, unlike standard models which are thought to be bottlenecked by parameter count. Finally, we propose practical interventions such as biasing the training distribution that improve the meta-training and meta-generalization of general-purpose in-context learning algorithms.
General-relativistic resistive-magnetohydrodynamics simulations of self-consistent magnetized rotating neutron stars
We present the first general-relativistic resistive magnetohydrodynamics simulations of self-consistent, rotating neutron stars with mixed poloidal and toroidal magnetic fields. Specifically, we investigate the role of resistivity in the dynamical evolution of neutron stars over a period of up to 100 ms and its effects on their quasi-equilibrium configurations. Our results demonstrate that resistivity can significantly influence the development of magnetohydrodynamic instabilities, resulting in markedly different magnetic field geometries. Additionally, resistivity suppresses the growth of these instabilities, leading to a reduction in the amplitude of emitted gravitational waves. Despite the variations in magnetic field geometries, the ratio of poloidal to toroidal field energies remains consistently 9:1 throughout the simulations, for the models we investigated.
General In-Hand Object Rotation with Vision and Touch
We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.
General Purpose Audio Effect Removal
Although the design and application of audio effects is well understood, the inverse problem of removing these effects is significantly more challenging and far less studied. Recently, deep learning has been applied to audio effect removal; however, existing approaches have focused on narrow formulations considering only one effect or source type at a time. In realistic scenarios, multiple effects are applied with varying source content. This motivates a more general task, which we refer to as general purpose audio effect removal. We developed a dataset for this task using five audio effects across four different sources and used it to train and evaluate a set of existing architectures. We found that no single model performed optimally on all effect types and sources. To address this, we introduced RemFX, an approach designed to mirror the compositionality of applied effects. We first trained a set of the best-performing effect-specific removal models and then leveraged an audio effect classification model to dynamically construct a graph of our models at inference. We found our approach to outperform single model baselines, although examples with many effects present remain challenging.
General Image-to-Image Translation with One-Shot Image Guidance
Large-scale text-to-image models pre-trained on massive text-image pairs show excellent performance in image synthesis recently. However, image can provide more intuitive visual concepts than plain text. People may ask: how can we integrate the desired visual concept into an existing image, such as our portrait? Current methods are inadequate in meeting this demand as they lack the ability to preserve content or translate visual concepts effectively. Inspired by this, we propose a novel framework named visual concept translator (VCT) with the ability to preserve content in the source image and translate the visual concepts guided by a single reference image. The proposed VCT contains a content-concept inversion (CCI) process to extract contents and concepts, and a content-concept fusion (CCF) process to gather the extracted information to obtain the target image. Given only one reference image, the proposed VCT can complete a wide range of general image-to-image translation tasks with excellent results. Extensive experiments are conducted to prove the superiority and effectiveness of the proposed methods. Codes are available at https://github.com/CrystalNeuro/visual-concept-translator.
Non-stationary Reinforcement Learning under General Function Approximation
General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation.
General Covariance Data Augmentation for Neural PDE Solvers
The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.
General-to-Specific Transfer Labeling for Domain Adaptable Keyphrase Generation
Training keyphrase generation (KPG) models require a large amount of annotated data, which can be prohibitively expensive and often limited to specific domains. In this study, we first demonstrate that large distribution shifts among different domains severely hinder the transferability of KPG models. We then propose a three-stage pipeline, which gradually guides KPG models' learning focus from general syntactical features to domain-related semantics, in a data-efficient manner. With Domain-general Phrase pre-training, we pre-train Sequence-to-Sequence models with generic phrase annotations that are widely available on the web, which enables the models to generate phrases in a wide range of domains. The resulting model is then applied in the Transfer Labeling stage to produce domain-specific pseudo keyphrases, which help adapt models to a new domain. Finally, we fine-tune the model with limited data with true labels to fully adapt it to the target domain. Our experiment results show that the proposed process can produce good-quality keyphrases in new domains and achieve consistent improvements after adaptation with limited in-domain annotated data. All code and datasets are available at https://github.com/memray/OpenNMT-kpg-release.
VideoDrafter: Content-Consistent Multi-Scene Video Generation with LLM
The recent innovations and breakthroughs in diffusion models have significantly expanded the possibilities of generating high-quality videos for the given prompts. Most existing works tackle the single-scene scenario with only one video event occurring in a single background. Extending to generate multi-scene videos nevertheless is not trivial and necessitates to nicely manage the logic in between while preserving the consistent visual appearance of key content across video scenes. In this paper, we propose a novel framework, namely VideoDrafter, for content-consistent multi-scene video generation. Technically, VideoDrafter leverages Large Language Models (LLM) to convert the input prompt into comprehensive multi-scene script that benefits from the logical knowledge learnt by LLM. The script for each scene includes a prompt describing the event, the foreground/background entities, as well as camera movement. VideoDrafter identifies the common entities throughout the script and asks LLM to detail each entity. The resultant entity description is then fed into a text-to-image model to generate a reference image for each entity. Finally, VideoDrafter outputs a multi-scene video by generating each scene video via a diffusion process that takes the reference images, the descriptive prompt of the event and camera movement into account. The diffusion model incorporates the reference images as the condition and alignment to strengthen the content consistency of multi-scene videos. Extensive experiments demonstrate that VideoDrafter outperforms the SOTA video generation models in terms of visual quality, content consistency, and user preference.
Event Camera Data Pre-training
This paper proposes a pre-trained neural network for handling event camera data. Our model is a self-supervised learning framework, and uses paired event camera data and natural RGB images for training. Our method contains three modules connected in a sequence: i) a family of event data augmentations, generating meaningful event images for self-supervised training; ii) a conditional masking strategy to sample informative event patches from event images, encouraging our model to capture the spatial layout of a scene and accelerating training; iii) a contrastive learning approach, enforcing the similarity of embeddings between matching event images, and between paired event and RGB images. An embedding projection loss is proposed to avoid the model collapse when enforcing the event image embedding similarities. A probability distribution alignment loss is proposed to encourage the event image to be consistent with its paired RGB image in the feature space. Transfer learning performance on downstream tasks shows the superiority of our method over state-of-the-art methods. For example, we achieve top-1 accuracy at 64.83% on the N-ImageNet dataset.
What can a cook in Italy teach a mechanic in India? Action Recognition Generalisation Over Scenarios and Locations
We propose and address a new generalisation problem: can a model trained for action recognition successfully classify actions when they are performed within a previously unseen scenario and in a previously unseen location? To answer this question, we introduce the Action Recognition Generalisation Over scenarios and locations dataset (ARGO1M), which contains 1.1M video clips from the large-scale Ego4D dataset, across 10 scenarios and 13 locations. We demonstrate recognition models struggle to generalise over 10 proposed test splits, each of an unseen scenario in an unseen location. We thus propose CIR, a method to represent each video as a Cross-Instance Reconstruction of videos from other domains. Reconstructions are paired with text narrations to guide the learning of a domain generalisable representation. We provide extensive analysis and ablations on ARGO1M that show CIR outperforms prior domain generalisation works on all test splits. Code and data: https://chiaraplizz.github.io/what-can-a-cook/.
Toward General Instruction-Following Alignment for Retrieval-Augmented Generation
Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (<100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (>100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io.
Piccolo2: General Text Embedding with Multi-task Hybrid Loss Training
In this report, we introduce Piccolo2, an embedding model that surpasses other models in the comprehensive evaluation over 6 tasks on CMTEB benchmark, setting a new state-of-the-art. Piccolo2 primarily leverages an efficient multi-task hybrid loss training approach, effectively harnessing textual data and labels from diverse downstream tasks. In addition, Piccolo2 scales up the embedding dimension and uses MRL training to support more flexible vector dimensions. The latest information of piccolo models can be accessed via: https://huggingface.co/sensenova/
A General Theoretical Paradigm to Understand Learning from Human Preferences
The prevalent deployment of learning from human preferences through reinforcement learning (RLHF) relies on two important approximations: the first assumes that pairwise preferences can be substituted with pointwise rewards. The second assumes that a reward model trained on these pointwise rewards can generalize from collected data to out-of-distribution data sampled by the policy. Recently, Direct Preference Optimisation (DPO) has been proposed as an approach that bypasses the second approximation and learn directly a policy from collected data without the reward modelling stage. However, this method still heavily relies on the first approximation. In this paper we try to gain a deeper theoretical understanding of these practical algorithms. In particular we derive a new general objective called PsiPO for learning from human preferences that is expressed in terms of pairwise preferences and therefore bypasses both approximations. This new general objective allows us to perform an in-depth analysis of the behavior of RLHF and DPO (as special cases of PsiPO) and to identify their potential pitfalls. We then consider another special case for PsiPO by setting Psi simply to Identity, for which we can derive an efficient optimisation procedure, prove performance guarantees and demonstrate its empirical superiority to DPO on some illustrative examples.
PolyMaX: General Dense Prediction with Mask Transformer
Dense prediction tasks, such as semantic segmentation, depth estimation, and surface normal prediction, can be easily formulated as per-pixel classification (discrete outputs) or regression (continuous outputs). This per-pixel prediction paradigm has remained popular due to the prevalence of fully convolutional networks. However, on the recent frontier of segmentation task, the community has been witnessing a shift of paradigm from per-pixel prediction to cluster-prediction with the emergence of transformer architectures, particularly the mask transformers, which directly predicts a label for a mask instead of a pixel. Despite this shift, methods based on the per-pixel prediction paradigm still dominate the benchmarks on the other dense prediction tasks that require continuous outputs, such as depth estimation and surface normal prediction. Motivated by the success of DORN and AdaBins in depth estimation, achieved by discretizing the continuous output space, we propose to generalize the cluster-prediction based method to general dense prediction tasks. This allows us to unify dense prediction tasks with the mask transformer framework. Remarkably, the resulting model PolyMaX demonstrates state-of-the-art performance on three benchmarks of NYUD-v2 dataset. We hope our simple yet effective design can inspire more research on exploiting mask transformers for more dense prediction tasks. Code and model will be made available.
Towards General-Purpose Speech Abilities for Large Language Models Using Unpaired Data
In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data. The proposed model can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform speech question answering, speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. Experiments show that our end-to-end approach is on par with or outperforms a cascaded system (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike a cascade, our approach shows the ability to interchange text and audio modalities and utilize the prior context in a conversation to provide better results.
Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis
Building general-purpose robots that can operate seamlessly, in any environment, with any object, and utilizing various skills to complete diverse tasks has been a long-standing goal in Artificial Intelligence. Unfortunately, however, most existing robotic systems have been constrained - having been designed for specific tasks, trained on specific datasets, and deployed within specific environments. These systems usually require extensively-labeled data, rely on task-specific models, have numerous generalization issues when deployed in real-world scenarios, and struggle to remain robust to distribution shifts. Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models (i.e., foundation models) in research fields such as Natural Language Processing (NLP) and Computer Vision (CV), we devote this survey to exploring (i) how these existing foundation models from NLP and CV can be applied to the field of robotics, and also exploring (ii) what a robotics-specific foundation model would look like. We begin by providing an overview of what constitutes a conventional robotic system and the fundamental barriers to making it universally applicable. Next, we establish a taxonomy to discuss current work exploring ways to leverage existing foundation models for robotics and develop ones catered to robotics. Finally, we discuss key challenges and promising future directions in using foundation models for enabling general-purpose robotic systems. We encourage readers to view our ``living`` GitHub repository of resources, including papers reviewed in this survey as well as related projects and repositories for developing foundation models for robotics.
Towards General Computer Control: A Multimodal Agent for Red Dead Redemption II as a Case Study
Despite the success in specific tasks and scenarios, existing foundation agents, empowered by large models (LMs) and advanced tools, still cannot generalize to different scenarios, mainly due to dramatic differences in the observations and actions across scenarios. In this work, we propose the General Computer Control (GCC) setting: building foundation agents that can master any computer task by taking only screen images (and possibly audio) of the computer as input, and producing keyboard and mouse operations as output, similar to human-computer interaction. The main challenges of achieving GCC are: 1) the multimodal observations for decision-making, 2) the requirements of accurate control of keyboard and mouse, 3) the need for long-term memory and reasoning, and 4) the abilities of efficient exploration and self-improvement. To target GCC, we introduce Cradle, an agent framework with six main modules, including: 1) information gathering to extract multi-modality information, 2) self-reflection to rethink past experiences, 3) task inference to choose the best next task, 4) skill curation for generating and updating relevant skills for given tasks, 5) action planning to generate specific operations for keyboard and mouse control, and 6) memory for storage and retrieval of past experiences and known skills. To demonstrate the capabilities of generalization and self-improvement of Cradle, we deploy it in the complex AAA game Red Dead Redemption II, serving as a preliminary attempt towards GCC with a challenging target. To our best knowledge, our work is the first to enable LMM-based agents to follow the main storyline and finish real missions in complex AAA games, with minimal reliance on prior knowledge or resources. The project website is at https://baai-agents.github.io/Cradle/.
Specific versus General Principles for Constitutional AI
Human feedback can prevent overtly harmful utterances in conversational models, but may not automatically mitigate subtle problematic behaviors such as a stated desire for self-preservation or power. Constitutional AI offers an alternative, replacing human feedback with feedback from AI models conditioned only on a list of written principles. We find this approach effectively prevents the expression of such behaviors. The success of simple principles motivates us to ask: can models learn general ethical behaviors from only a single written principle? To test this, we run experiments using a principle roughly stated as "do what's best for humanity". We find that the largest dialogue models can generalize from this short constitution, resulting in harmless assistants with no stated interest in specific motivations like power. A general principle may thus partially avoid the need for a long list of constitutions targeting potentially harmful behaviors. However, more detailed constitutions still improve fine-grained control over specific types of harms. This suggests both general and specific principles have value for steering AI safely.
VIMA: General Robot Manipulation with Multimodal Prompts
Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. This work shows that we can express a wide spectrum of robot manipulation tasks with multimodal prompts, interleaving textual and visual tokens. We design a transformer-based generalist robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. To train and evaluate VIMA, we develop a new simulation benchmark with thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and four levels of evaluation protocol for systematic generalization. VIMA achieves strong scalability in both model capacity and data size. It outperforms prior SOTA methods in the hardest zero-shot generalization setting by up to 2.9times task success rate given the same training data. With 10times less training data, VIMA still performs 2.7times better than the top competing approach. We open-source all code, pretrained models, dataset, and simulation benchmark at https://vimalabs.github.io
A General Language Assistant as a Laboratory for Alignment
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
GLM: General Language Model Pretraining with Autoregressive Blank Infilling
There have been various types of pretraining architectures including autoencoding models (e.g., BERT), autoregressive models (e.g., GPT), and encoder-decoder models (e.g., T5). However, none of the pretraining frameworks performs the best for all tasks of three main categories including natural language understanding (NLU), unconditional generation, and conditional generation. We propose a General Language Model (GLM) based on autoregressive blank infilling to address this challenge. GLM improves blank filling pretraining by adding 2D positional encodings and allowing an arbitrary order to predict spans, which results in performance gains over BERT and T5 on NLU tasks. Meanwhile, GLM can be pretrained for different types of tasks by varying the number and lengths of blanks. On a wide range of tasks across NLU, conditional and unconditional generation, GLM outperforms BERT, T5, and GPT given the same model sizes and data, and achieves the best performance from a single pretrained model with 1.25x parameters of BERT Large , demonstrating its generalizability to different downstream tasks.
Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging
Text embeddings are vital for tasks such as text retrieval and semantic textual similarity (STS). Recently, the advent of pretrained language models, along with unified benchmarks like the Massive Text Embedding Benchmark (MTEB), has facilitated the development of versatile general-purpose text embedding models. Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks. However, our experimental analysis reveals two significant drawbacks of joint training: 1) Task Conflict: Gradients from different tasks interfere with each other, leading to negative transfer. 2) Data Imbalance: Disproportionate data distribution introduces biases that negatively impact performance across tasks. To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution. We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the interpolation space of task vectors using stochastic gradient descent. Our experiments demonstrate that Self Positioning significantly enhances multi-task performance on the MTEB dataset, achieving an absolute improvement of 0.7 points. It outperforms traditional resampling methods while reducing computational costs. This work offers a robust approach to building generalized text embedding models with superior performance across diverse embedding-related tasks.
Towards General Purpose Vision Foundation Models for Medical Image Analysis: An Experimental Study of DINOv2 on Radiology Benchmarks
The integration of deep learning systems into the medical domain has been hindered by the resource-intensive process of data annotation and the inability of these systems to generalize to different data distributions. Foundation models, which are models pre-trained on large datasets, have emerged as a solution to reduce reliance on annotated data and enhance model generalizability and robustness. DINOv2, an open-source foundation model pre-trained with self-supervised learning on 142 million curated natural images, excels in extracting general-purpose visual representations, exhibiting promising capabilities across various vision tasks. Nevertheless, a critical question remains unanswered regarding DINOv2's adaptability to radiological imaging, and the clarity on whether its features are sufficiently general to benefit radiology image analysis is yet to be established. Therefore, this study comprehensively evaluates DINOv2 for radiology, conducting over 100 experiments across diverse modalities (X-ray, CT, and MRI). Tasks include disease classification and organ segmentation on both 2D and 3D images, evaluated under different settings like kNN, few-shot learning, linear-probing, end-to-end fine-tuning, and parameter-efficient fine-tuning, to measure the effectiveness and generalizability of the DINOv2 feature embeddings. Comparative analyses with established medical image analysis models, U-Net and TransUnet for segmentation, and CNN and ViT models pre-trained via supervised, weakly supervised, and self-supervised learning for classification, reveal DINOv2's superior performance in segmentation tasks and competitive results in disease classification. The findings contribute insights to potential avenues for optimizing pre-training strategies for medical imaging and enhancing the broader understanding of DINOv2's role in bridging the gap between natural and radiological image analysis.
A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts
Mixture-of-experts (MoE) model incorporates the power of multiple submodels via gating functions to achieve greater performance in numerous regression and classification applications. From a theoretical perspective, while there have been previous attempts to comprehend the behavior of that model under the regression settings through the convergence analysis of maximum likelihood estimation in the Gaussian MoE model, such analysis under the setting of a classification problem has remained missing in the literature. We close this gap by establishing the convergence rates of density estimation and parameter estimation in the softmax gating multinomial logistic MoE model. Notably, when part of the expert parameters vanish, these rates are shown to be slower than polynomial rates owing to an inherent interaction between the softmax gating and expert functions via partial differential equations. To address this issue, we propose using a novel class of modified softmax gating functions which transform the input value before delivering them to the gating functions. As a result, the previous interaction disappears and the parameter estimation rates are significantly improved.
A General-Purpose Multilingual Document Encoder
Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders .
Perceiver: General Perception with Iterative Attention
Biological systems perceive the world by simultaneously processing high-dimensional inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The perception models used in deep learning on the other hand are designed for individual modalities, often relying on domain-specific assumptions such as the local grid structures exploited by virtually all existing vision models. These priors introduce helpful inductive biases, but also lock models to individual modalities. In this paper we introduce the Perceiver - a model that builds upon Transformers and hence makes few architectural assumptions about the relationship between its inputs, but that also scales to hundreds of thousands of inputs, like ConvNets. The model leverages an asymmetric attention mechanism to iteratively distill inputs into a tight latent bottleneck, allowing it to scale to handle very large inputs. We show that this architecture is competitive with or outperforms strong, specialized models on classification tasks across various modalities: images, point clouds, audio, video, and video+audio. The Perceiver obtains performance comparable to ResNet-50 and ViT on ImageNet without 2D convolutions by directly attending to 50,000 pixels. It is also competitive in all modalities in AudioSet.
Phantom: General Trigger Attacks on Retrieval Augmented Language Generation
Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs) in chatbot applications, enabling developers to adapt and personalize the LLM output without expensive training or fine-tuning. RAG systems use an external knowledge database to retrieve the most relevant documents for a given query, providing this context to the LLM generator. While RAG achieves impressive utility in many applications, its adoption to enable personalized generative models introduces new security risks. In this work, we propose new attack surfaces for an adversary to compromise a victim's RAG system, by injecting a single malicious document in its knowledge database. We design Phantom, general two-step attack framework against RAG augmented LLMs. The first step involves crafting a poisoned document designed to be retrieved by the RAG system within the top-k results only when an adversarial trigger, a specific sequence of words acting as backdoor, is present in the victim's queries. In the second step, a specially crafted adversarial string within the poisoned document triggers various adversarial attacks in the LLM generator, including denial of service, reputation damage, privacy violations, and harmful behaviors. We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama.
Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.
Towards General Conceptual Model Editing via Adversarial Representation Engineering
Since the development of Large Language Models (LLMs) has achieved remarkable success, understanding and controlling their internal complex mechanisms has become an urgent problem. Recent research has attempted to interpret their behaviors through the lens of inner representation. However, developing practical and efficient methods for applying these representations for general and flexible model editing remains challenging. In this work, we explore how to use representation engineering methods to guide the editing of LLMs by deploying a representation sensor as an oracle. We first identify the importance of a robust and reliable sensor during editing, then propose an Adversarial Representation Engineering (ARE) framework to provide a unified and interpretable approach for conceptual model editing without compromising baseline performance. Experiments on multiple model editing paradigms demonstrate the effectiveness of ARE in various settings. Code and data are available at https://github.com/Zhang-Yihao/Adversarial-Representation-Engineering.
RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks
Ribonucleic acid (RNA) plays a variety of crucial roles in fundamental biological processes. Recently, RNA has become an interesting drug target, emphasizing the need to improve our understanding of its structures and functions. Over the years, sequencing technologies have produced an enormous amount of unlabeled RNA data, which hides important knowledge and potential. Motivated by the successes of protein language models, we introduce RiboNucleic Acid Language Model (RiNALMo) to help unveil the hidden code of RNA. RiNALMo is the largest RNA language model to date with 650 million parameters pre-trained on 36 million non-coding RNA sequences from several available databases. RiNALMo is able to extract hidden knowledge and capture the underlying structure information implicitly embedded within the RNA sequences. RiNALMo achieves state-of-the-art results on several downstream tasks. Notably, we show that its generalization capabilities can overcome the inability of other deep learning methods for secondary structure prediction to generalize on unseen RNA families. The code has been made publicly available on https://github.com/lbcb-sci/RiNALMo.
A General-purpose AI Avatar in Healthcare
Recent advancements in machine learning and natural language processing have led to the rapid development of artificial intelligence (AI) as a valuable tool in the healthcare industry. Using large language models (LLMs) as conversational agents or chatbots has the potential to assist doctors in diagnosing patients, detecting early symptoms of diseases, and providing health advice to patients. This paper focuses on the role of chatbots in healthcare and explores the use of avatars to make AI interactions more appealing to patients. A framework of a general-purpose AI avatar application is demonstrated by using a three-category prompt dictionary and prompt improvement mechanism. A two-phase approach is suggested to fine-tune a general-purpose AI language model and create different AI avatars to discuss medical issues with users. Prompt engineering enhances the chatbot's conversational abilities and personality traits, fostering a more human-like interaction with patients. Ultimately, the injection of personality into the chatbot could potentially increase patient engagement. Future directions for research include investigating ways to improve chatbots' understanding of context and ensuring the accuracy of their outputs through fine-tuning with specialized medical data sets.
A General Framework for User-Guided Bayesian Optimization
The optimization of expensive-to-evaluate black-box functions is prevalent in various scientific disciplines. Bayesian optimization is an automatic, general and sample-efficient method to solve these problems with minimal knowledge of the underlying function dynamics. However, the ability of Bayesian optimization to incorporate prior knowledge or beliefs about the function at hand in order to accelerate the optimization is limited, which reduces its appeal for knowledgeable practitioners with tight budgets. To allow domain experts to customize the optimization routine, we propose ColaBO, the first Bayesian-principled framework for incorporating prior beliefs beyond the typical kernel structure, such as the likely location of the optimizer or the optimal value. The generality of ColaBO makes it applicable across different Monte Carlo acquisition functions and types of user beliefs. We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.
Towards General-Purpose Text-Instruction-Guided Voice Conversion
This paper introduces a novel voice conversion (VC) model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice". Unlike traditional methods that rely on reference utterances to determine the attributes of the converted speech, our model adds versatility and specificity to voice conversion. The proposed VC model is a neural codec language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech. It utilizes text instructions as style prompts to modify the prosody and emotional information of the given speech. In contrast to previous approaches, which often rely on employing separate encoders like prosody and content encoders to handle different aspects of the source speech, our model handles various information of speech in an end-to-end manner. Experiments have demonstrated the impressive capabilities of our model in comprehending instructions and delivering reasonable results.
A General-Purpose Self-Supervised Model for Computational Pathology
Tissue phenotyping is a fundamental computational pathology (CPath) task in learning objective characterizations of histopathologic biomarkers in anatomic pathology. However, whole-slide imaging (WSI) poses a complex computer vision problem in which the large-scale image resolutions of WSIs and the enormous diversity of morphological phenotypes preclude large-scale data annotation. Current efforts have proposed using pretrained image encoders with either transfer learning from natural image datasets or self-supervised pretraining on publicly-available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using over 100 million tissue patches from over 100,000 diagnostic haematoxylin and eosin-stained WSIs across 20 major tissue types, and evaluated on 33 representative CPath clinical tasks in CPath of varying diagnostic difficulties. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree code classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient AI models that can generalize and transfer to a gamut of diagnostically-challenging tasks and clinical workflows in anatomic pathology.
Towards General Low-Light Raw Noise Synthesis and Modeling
Modeling and synthesizing low-light raw noise is a fundamental problem for computational photography and image processing applications. Although most recent works have adopted physics-based models to synthesize noise, the signal-independent noise in low-light conditions is far more complicated and varies dramatically across camera sensors, which is beyond the description of these models. To address this issue, we introduce a new perspective to synthesize the signal-independent noise by a generative model. Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner, respectively. In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels and generalize to various sensors. Subsequently, we present an effective multi-scale discriminator termed Fourier transformer discriminator (FTD) to distinguish the noise distribution accurately. Additionally, we collect a new low-light raw denoising (LRD) dataset for training and benchmarking. Qualitative validation shows that the noise generated by our proposed noise model can be highly similar to the real noise in terms of distribution. Furthermore, extensive denoising experiments demonstrate that our method performs favorably against state-of-the-art methods on different sensors.
Artificial General Intelligence for Medical Imaging
In this review, we explore the potential applications of Artificial General Intelligence (AGI) models in healthcare, focusing on foundational Large Language Models (LLMs), Large Vision Models, and Large Multimodal Models. We emphasize the importance of integrating clinical expertise, domain knowledge, and multimodal capabilities into AGI models. In addition, we lay out key roadmaps that guide the development and deployment of healthcare AGI models. Throughout the review, we provide critical perspectives on the potential challenges and pitfalls associated with deploying large-scale AGI models in the medical field. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare and beyond.
G3Detector: General GPT-Generated Text Detector
The burgeoning progress in the field of Large Language Models (LLMs) heralds significant benefits due to their unparalleled capacities. However, it is critical to acknowledge the potential misuse of these models, which could give rise to a spectrum of social and ethical dilemmas. Despite numerous preceding efforts centered around distinguishing synthetic text, most existing detection systems fail to identify data synthesized by the latest LLMs, such as ChatGPT and GPT-4. In response to this challenge, we introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields. Moreover, our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies. It also possesses the capability to identify text generated utilizing a potent detection-evasion technique. Our comprehensive research underlines our commitment to boosting the robustness and efficiency of machine-generated text detection mechanisms, particularly in the context of swiftly progressing and increasingly adaptive AI technologies.
Neuralizer: General Neuroimage Analysis without Re-Training
Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. Yet, when presented with a new task or a dataset with different visual characteristics, practitioners most often need to train a new model, or fine-tune an existing one. This is a time-consuming process that poses a substantial barrier for the thousands of neuroscientists and clinical researchers who often lack the resources or machine-learning expertise to train deep learning models. In practice, this leads to a lack of adoption of deep learning, and neuroscience tools being dominated by classical frameworks. We introduce Neuralizer, a single model that generalizes to previously unseen neuroimaging tasks and modalities without the need for re-training or fine-tuning. Tasks do not have to be known a priori, and generalization happens in a single forward pass during inference. The model can solve processing tasks across multiple image modalities, acquisition methods, and datasets, and generalize to tasks and modalities it has not been trained on. Our experiments on coronal slices show that when few annotated subjects are available, our multi-task network outperforms task-specific baselines without training on the task.
Toward General Design Principles for Generative AI Applications
Generative AI technologies are growing in power, utility, and use. As generative technologies are being incorporated into mainstream applications, there is a need for guidance on how to design those applications to foster productive and safe use. Based on recent research on human-AI co-creation within the HCI and AI communities, we present a set of seven principles for the design of generative AI applications. These principles are grounded in an environment of generative variability. Six principles are focused on designing for characteristics of generative AI: multiple outcomes & imperfection; exploration & control; and mental models & explanations. In addition, we urge designers to design against potential harms that may be caused by a generative model's hazardous output, misuse, or potential for human displacement. We anticipate these principles to usefully inform design decisions made in the creation of novel human-AI applications, and we invite the community to apply, revise, and extend these principles to their own work.
Transferring General Multimodal Pretrained Models to Text Recognition
This paper proposes a new method, OFA-OCR, to transfer multimodal pretrained models to text recognition. Specifically, we recast text recognition as image captioning and directly transfer a unified vision-language pretrained model to the end task. Without pretraining on large-scale annotated or synthetic text recognition data, OFA-OCR outperforms the baselines and achieves state-of-the-art performance in the Chinese text recognition benchmark. Additionally, we construct an OCR pipeline with OFA-OCR, and we demonstrate that it can achieve competitive performance with the product-level API. The code (https://github.com/OFA-Sys/OFA) and demo (https://modelscope.cn/studios/damo/ofa_ocr_pipeline/summary) are publicly available.
InternVideo: General Video Foundation Models via Generative and Discriminative Learning
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
Domain-General Crowd Counting in Unseen Scenarios
Domain shift across crowd data severely hinders crowd counting models to generalize to unseen scenarios. Although domain adaptive crowd counting approaches close this gap to a certain extent, they are still dependent on the target domain data to adapt (e.g. finetune) their models to the specific domain. In this paper, we aim to train a model based on a single source domain which can generalize well on any unseen domain. This falls into the realm of domain generalization that remains unexplored in crowd counting. We first introduce a dynamic sub-domain division scheme which divides the source domain into multiple sub-domains such that we can initiate a meta-learning framework for domain generalization. The sub-domain division is dynamically refined during the meta-learning. Next, in order to disentangle domain-invariant information from domain-specific information in image features, we design the domain-invariant and -specific crowd memory modules to re-encode image features. Two types of losses, i.e. feature reconstruction and orthogonal losses, are devised to enable this disentanglement. Extensive experiments on several standard crowd counting benchmarks i.e. SHA, SHB, QNRF, and NWPU, show the strong generalizability of our method.
Learning General Audio Representations with Large-Scale Training of Patchout Audio Transformers
The success of supervised deep learning methods is largely due to their ability to learn relevant features from raw data. Deep Neural Networks (DNNs) trained on large-scale datasets are capable of capturing a diverse set of features, and learning a representation that can generalize onto unseen tasks and datasets that are from the same domain. Hence, these models can be used as powerful feature extractors, in combination with shallower models as classifiers, for smaller tasks and datasets where the amount of training data is insufficient for learning an end-to-end model from scratch. During the past years, Convolutional Neural Networks (CNNs) have largely been the method of choice for audio processing. However, recently attention-based transformer models have demonstrated great potential in supervised settings, outperforming CNNs. In this work, we investigate the use of audio transformers trained on large-scale datasets to learn general-purpose representations. We study how the different setups in these audio transformers affect the quality of their embeddings. We experiment with the models' time resolution, extracted embedding level, and receptive fields in order to see how they affect performance on a variety of tasks and datasets, following the HEAR 2021 NeurIPS challenge evaluation setup. Our results show that representations extracted by audio transformers outperform CNN representations. Furthermore, we will show that transformers trained on Audioset can be extremely effective representation extractors for a wide range of downstream tasks.
A general-purpose material property data extraction pipeline from large polymer corpora using Natural Language Processing
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from published literature. We used natural language processing (NLP) methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science abstracts, which outperforms other baseline models in three out of five named entity recognition datasets when used as the encoder for text. Using this pipeline, we obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted through our pipeline is made available through a web platform at https://polymerscholar.org which can be used to locate material property data recorded in abstracts conveniently. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with a complete set of extracted material property information.
Annotated Dataset Creation through General Purpose Language Models for non-English Medical NLP
Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training in natural language processsing (NLP). In general, developing and applying new NLP pipelines in domain-specific contexts for tasks often requires custom designed datasets to address NLP tasks in supervised machine learning fashion. When operating in non-English languages for medical data processing, this exposes several minor and major, interconnected problems such as lack of task-matching datasets as well as task-specific pre-trained models. In our work we suggest to leverage pretrained language models for training data acquisition in order to retrieve sufficiently large datasets for training smaller and more efficient models for use-case specific tasks. To demonstrate the effectiveness of your approach, we create a custom dataset which we use to train a medical NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our obtained dataset as well as our pre-trained models are publicly available at: https://github.com/frankkramer-lab/GPTNERMED
GenHPF: General Healthcare Predictive Framework with Multi-task Multi-source Learning
Despite the remarkable progress in the development of predictive models for healthcare, applying these algorithms on a large scale has been challenging. Algorithms trained on a particular task, based on specific data formats available in a set of medical records, tend to not generalize well to other tasks or databases in which the data fields may differ. To address this challenge, we propose General Healthcare Predictive Framework (GenHPF), which is applicable to any EHR with minimal preprocessing for multiple prediction tasks. GenHPF resolves heterogeneity in medical codes and schemas by converting EHRs into a hierarchical textual representation while incorporating as many features as possible. To evaluate the efficacy of GenHPF, we conduct multi-task learning experiments with single-source and multi-source settings, on three publicly available EHR datasets with different schemas for 12 clinically meaningful prediction tasks. Our framework significantly outperforms baseline models that utilize domain knowledge in multi-source learning, improving average AUROC by 1.2%P in pooled learning and 2.6%P in transfer learning while also showing comparable results when trained on a single EHR dataset. Furthermore, we demonstrate that self-supervised pretraining using multi-source datasets is effective when combined with GenHPF, resulting in a 0.6%P AUROC improvement compared to models without pretraining. By eliminating the need for preprocessing and feature engineering, we believe that this work offers a solid framework for multi-task and multi-source learning that can be leveraged to speed up the scaling and usage of predictive algorithms in healthcare.
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.
Provable General Function Class Representation Learning in Multitask Bandits and MDPs
While multitask representation learning has become a popular approach in reinforcement learning (RL) to boost the sample efficiency, the theoretical understanding of why and how it works is still limited. Most previous analytical works could only assume that the representation function is already known to the agent or from linear function class, since analyzing general function class representation encounters non-trivial technical obstacles such as generalization guarantee, formulation of confidence bound in abstract function space, etc. However, linear-case analysis heavily relies on the particularity of linear function class, while real-world practice usually adopts general non-linear representation functions like neural networks. This significantly reduces its applicability. In this work, we extend the analysis to general function class representations. Specifically, we consider an agent playing M contextual bandits (or MDPs) concurrently and extracting a shared representation function phi from a specific function class Phi using our proposed Generalized Functional Upper Confidence Bound algorithm (GFUCB). We theoretically validate the benefit of multitask representation learning within general function class for bandits and linear MDP for the first time. Lastly, we conduct experiments to demonstrate the effectiveness of our algorithm with neural net representation.
GSPMD: General and Scalable Parallelization for ML Computation Graphs
We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.
Towards General Natural Language Understanding with Probabilistic Worldbuilding
We introduce the Probabilistic Worldbuilding Model (PWM), a new fully-symbolic Bayesian model of semantic parsing and reasoning, as a first step in a research program toward more domain- and task-general NLU and AI. Humans create internal mental models of their observations which greatly aid in their ability to understand and reason about a large variety of problems. In PWM, the meanings of sentences, acquired facts about the world, and intermediate steps in reasoning are all expressed in a human-readable formal language, with the design goal of interpretability. PWM is Bayesian, designed specifically to be able to generalize to new domains and new tasks. We derive and implement an inference algorithm that reads sentences by parsing and abducing updates to its latent world model that capture the semantics of those sentences, and evaluate it on two out-of-domain question-answering datasets: (1) ProofWriter and (2) a new dataset we call FictionalGeoQA, designed to be more representative of real language but still simple enough to focus on evaluating reasoning ability, while being robust against heuristics. Our method outperforms baselines on both, thereby demonstrating its value as a proof-of-concept.
The General Theory of General Intelligence: A Pragmatic Patternist Perspective
A multi-decade exploration into the theoretical foundations of artificial and natural general intelligence, which has been expressed in a series of books and papers and used to guide a series of practical and research-prototype software systems, is reviewed at a moderate level of detail. The review covers underlying philosophies (patternist philosophy of mind, foundational phenomenological and logical ontology), formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems partly driven by these formalizations and philosophies. The implementation of specific cognitive processes such as logical reasoning, program learning, clustering and attention allocation in the context and language of this high level architecture is considered, as is the importance of a common (e.g. typed metagraph based) knowledge representation for enabling "cognitive synergy" between the various processes. The specifics of human-like cognitive architecture are presented as manifestations of these general principles, and key aspects of machine consciousness and machine ethics are also treated in this context. Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.