Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInfiniteYou: Flexible Photo Recrafting While Preserving Your Identity
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes
Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos. Personalized TFG is a variant that emphasizes the perceptual identity similarity of the synthesized result (from the perspective of appearance and talking style). While previous works typically solve this problem by learning an individual neural radiance field (NeRF) for each identity to implicitly store its static and dynamic information, we find it inefficient and non-generalized due to the per-identity-per-training framework and the limited training data. To this end, we propose MimicTalk, the first attempt that exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG. To be specific, (1) we first come up with a person-agnostic 3D TFG model as the base model and propose to adapt it into a specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to help the model learn the personalized static appearance and facial dynamic features; (3) To generate the facial motion of the personalized talking style, we propose an in-context stylized audio-to-motion model that mimics the implicit talking style provided in the reference video without information loss by an explicit style representation. The adaptation process to an unseen identity can be performed in 15 minutes, which is 47 times faster than previous person-dependent methods. Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness. Source code and video samples are available at https://mimictalk.github.io .
Benchmarking Algorithmic Bias in Face Recognition: An Experimental Approach Using Synthetic Faces and Human Evaluation
We propose an experimental method for measuring bias in face recognition systems. Existing methods to measure bias depend on benchmark datasets that are collected in the wild and annotated for protected (e.g., race, gender) and non-protected (e.g., pose, lighting) attributes. Such observational datasets only permit correlational conclusions, e.g., "Algorithm A's accuracy is different on female and male faces in dataset X.". By contrast, experimental methods manipulate attributes individually and thus permit causal conclusions, e.g., "Algorithm A's accuracy is affected by gender and skin color." Our method is based on generating synthetic faces using a neural face generator, where each attribute of interest is modified independently while leaving all other attributes constant. Human observers crucially provide the ground truth on perceptual identity similarity between synthetic image pairs. We validate our method quantitatively by evaluating race and gender biases of three research-grade face recognition models. Our synthetic pipeline reveals that for these algorithms, accuracy is lower for Black and East Asian population subgroups. Our method can also quantify how perceptual changes in attributes affect face identity distances reported by these models. Our large synthetic dataset, consisting of 48,000 synthetic face image pairs (10,200 unique synthetic faces) and 555,000 human annotations (individual attributes and pairwise identity comparisons) is available to researchers in this important area.
High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
HiFiVFS: High Fidelity Video Face Swapping
Face swapping aims to generate results that combine the identity from the source with attributes from the target. Existing methods primarily focus on image-based face swapping. When processing videos, each frame is handled independently, making it difficult to ensure temporal stability. From a model perspective, face swapping is gradually shifting from generative adversarial networks (GANs) to diffusion models (DMs), as DMs have been shown to possess stronger generative capabilities. Current diffusion-based approaches often employ inpainting techniques, which struggle to preserve fine-grained attributes like lighting and makeup. To address these challenges, we propose a high fidelity video face swapping (HiFiVFS) framework, which leverages the strong generative capability and temporal prior of Stable Video Diffusion (SVD). We build a fine-grained attribute module to extract identity-disentangled and fine-grained attribute features through identity desensitization and adversarial learning. Additionally, We introduce detailed identity injection to further enhance identity similarity. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) in video face swapping, both qualitatively and quantitatively.
Face2Diffusion for Fast and Editable Face Personalization
Face personalization aims to insert specific faces, taken from images, into pretrained text-to-image diffusion models. However, it is still challenging for previous methods to preserve both the identity similarity and editability due to overfitting to training samples. In this paper, we propose Face2Diffusion (F2D) for high-editability face personalization. The core idea behind F2D is that removing identity-irrelevant information from the training pipeline prevents the overfitting problem and improves editability of encoded faces. F2D consists of the following three novel components: 1) Multi-scale identity encoder provides well-disentangled identity features while keeping the benefits of multi-scale information, which improves the diversity of camera poses. 2) Expression guidance disentangles face expressions from identities and improves the controllability of face expressions. 3) Class-guided denoising regularization encourages models to learn how faces should be denoised, which boosts the text-alignment of backgrounds. Extensive experiments on the FaceForensics++ dataset and diverse prompts demonstrate our method greatly improves the trade-off between the identity- and text-fidelity compared to previous state-of-the-art methods.
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.
Improvement Speaker Similarity for Zero-Shot Any-to-Any Voice Conversion of Whispered and Regular Speech
Zero-shot voice conversion aims to transfer the voice of a source speaker to that of a speaker unseen during training, while preserving the content information. Although various methods have been proposed to reconstruct speaker information in generated speech, there is still room for improvement in achieving high similarity between generated and ground truth recordings. Furthermore, zero-shot voice conversion for speech in specific domains, such as whispered, remains an unexplored area. To address this problem, we propose a SpeakerVC model that can effectively perform zero-shot speech conversion in both voiced and whispered domains, while being lightweight and capable of running in streaming mode without significant quality degradation. In addition, we explore methods to improve the quality of speaker identity transfer and demonstrate their effectiveness for a variety of voice conversion systems.
EchoVideo: Identity-Preserving Human Video Generation by Multimodal Feature Fusion
Recent advancements in video generation have significantly impacted various downstream applications, particularly in identity-preserving video generation (IPT2V). However, existing methods struggle with "copy-paste" artifacts and low similarity issues, primarily due to their reliance on low-level facial image information. This dependence can result in rigid facial appearances and artifacts reflecting irrelevant details. To address these challenges, we propose EchoVideo, which employs two key strategies: (1) an Identity Image-Text Fusion Module (IITF) that integrates high-level semantic features from text, capturing clean facial identity representations while discarding occlusions, poses, and lighting variations to avoid the introduction of artifacts; (2) a two-stage training strategy, incorporating a stochastic method in the second phase to randomly utilize shallow facial information. The objective is to balance the enhancements in fidelity provided by shallow features while mitigating excessive reliance on them. This strategy encourages the model to utilize high-level features during training, ultimately fostering a more robust representation of facial identities. EchoVideo effectively preserves facial identities and maintains full-body integrity. Extensive experiments demonstrate that it achieves excellent results in generating high-quality, controllability and fidelity videos.
I'm Spartacus, No, I'm Spartacus: Measuring and Understanding LLM Identity Confusion
Large Language Models (LLMs) excel in diverse tasks such as text generation, data analysis, and software development, making them indispensable across domains like education, business, and creative industries. However, the rapid proliferation of LLMs (with over 560 companies developing or deploying them as of 2024) has raised concerns about their originality and trustworthiness. A notable issue, termed identity confusion, has emerged, where LLMs misrepresent their origins or identities. This study systematically examines identity confusion through three research questions: (1) How prevalent is identity confusion among LLMs? (2) Does it arise from model reuse, plagiarism, or hallucination? (3) What are the security and trust-related impacts of identity confusion? To address these, we developed an automated tool combining documentation analysis, self-identity recognition testing, and output similarity comparisons--established methods for LLM fingerprinting--and conducted a structured survey via Credamo to assess its impact on user trust. Our analysis of 27 LLMs revealed that 25.93% exhibit identity confusion. Output similarity analysis confirmed that these issues stem from hallucinations rather than replication or reuse. Survey results further highlighted that identity confusion significantly erodes trust, particularly in critical tasks like education and professional use, with declines exceeding those caused by logical errors or inconsistencies. Users attributed these failures to design flaws, incorrect training data, and perceived plagiarism, underscoring the systemic risks posed by identity confusion to LLM reliability and trustworthiness.
Moral Mimicry: Large Language Models Produce Moral Rationalizations Tailored to Political Identity
Large Language Models (LLMs) have demonstrated impressive capabilities in generating fluent text, as well as tendencies to reproduce undesirable social biases. This study investigates whether LLMs reproduce the moral biases associated with political groups in the United States, an instance of a broader capability herein termed moral mimicry. This hypothesis is explored in the GPT-3/3.5 and OPT families of Transformer-based LLMs. Using tools from Moral Foundations Theory, it is shown that these LLMs are indeed moral mimics. When prompted with a liberal or conservative political identity, the models generate text reflecting corresponding moral biases. This study also explores the relationship between moral mimicry and model size, and similarity between human and LLM moral word use.
Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
Arc2Face: A Foundation Model of Human Faces
This paper presents Arc2Face, an identity-conditioned face foundation model, which, given the ArcFace embedding of a person, can generate diverse photo-realistic images with an unparalleled degree of face similarity than existing models. Despite previous attempts to decode face recognition features into detailed images, we find that common high-resolution datasets (e.g. FFHQ) lack sufficient identities to reconstruct any subject. To that end, we meticulously upsample a significant portion of the WebFace42M database, the largest public dataset for face recognition (FR). Arc2Face builds upon a pretrained Stable Diffusion model, yet adapts it to the task of ID-to-face generation, conditioned solely on ID vectors. Deviating from recent works that combine ID with text embeddings for zero-shot personalization of text-to-image models, we emphasize on the compactness of FR features, which can fully capture the essence of the human face, as opposed to hand-crafted prompts. Crucially, text-augmented models struggle to decouple identity and text, usually necessitating some description of the given face to achieve satisfactory similarity. Arc2Face, however, only needs the discriminative features of ArcFace to guide the generation, offering a robust prior for a plethora of tasks where ID consistency is of paramount importance. As an example, we train a FR model on synthetic images from our model and achieve superior performance to existing synthetic datasets.
Primate Face Identification in the Wild
Ecological imbalance owing to rapid urbanization and deforestation has adversely affected the population of several wild animals. This loss of habitat has skewed the population of several non-human primate species like chimpanzees and macaques and has constrained them to co-exist in close proximity of human settlements, often leading to human-wildlife conflicts while competing for resources. For effective wildlife conservation and conflict management, regular monitoring of population and of conflicted regions is necessary. However, existing approaches like field visits for data collection and manual analysis by experts is resource intensive, tedious and time consuming, thus necessitating an automated, non-invasive, more efficient alternative like image based facial recognition. The challenge in individual identification arises due to unrelated factors like pose, lighting variations and occlusions due to the uncontrolled environments, that is further exacerbated by limited training data. Inspired by human perception, we propose to learn representations that are robust to such nuisance factors and capture the notion of similarity over the individual identity sub-manifolds. The proposed approach, Primate Face Identification (PFID), achieves this by training the network to distinguish between positive and negative pairs of images. The PFID loss augments the standard cross entropy loss with a pairwise loss to learn more discriminative and generalizable features, thus making it appropriate for other related identification tasks like open-set, closed set and verification. We report state-of-the-art accuracy on facial recognition of two primate species, rhesus macaques and chimpanzees under the four protocols of classification, verification, closed-set identification and open-set recognition.
ID-Patch: Robust ID Association for Group Photo Personalization
The ability to synthesize personalized group photos and specify the positions of each identity offers immense creative potential. While such imagery can be visually appealing, it presents significant challenges for existing technologies. A persistent issue is identity (ID) leakage, where injected facial features interfere with one another, resulting in low face resemblance, incorrect positioning, and visual artifacts. Existing methods suffer from limitations such as the reliance on segmentation models, increased runtime, or a high probability of ID leakage. To address these challenges, we propose ID-Patch, a novel method that provides robust association between identities and 2D positions. Our approach generates an ID patch and ID embeddings from the same facial features: the ID patch is positioned on the conditional image for precise spatial control, while the ID embeddings integrate with text embeddings to ensure high resemblance. Experimental results demonstrate that ID-Patch surpasses baseline methods across metrics, such as face ID resemblance, ID-position association accuracy, and generation efficiency. Project Page is: https://byteaigc.github.io/ID-Patch/
From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization
Person re-identification (ReID) aims to extract accurate identity representation features. However, during feature extraction, individual samples are inevitably affected by noise (background, occlusions, and model limitations). Considering that features from the same identity follow a normal distribution around identity centers after training, we propose a Training-Free Feature Centralization ReID framework (Pose2ID) by aggregating the same identity features to reduce individual noise and enhance the stability of identity representation, which preserves the feature's original distribution for following strategies such as re-ranking. Specifically, to obtain samples of the same identity, we introduce two components:Identity-Guided Pedestrian Generation: by leveraging identity features to guide the generation process, we obtain high-quality images with diverse poses, ensuring identity consistency even in complex scenarios such as infrared, and occlusion.Neighbor Feature Centralization: it explores each sample's potential positive samples from its neighborhood. Experiments demonstrate that our generative model exhibits strong generalization capabilities and maintains high identity consistency. With the Feature Centralization framework, we achieve impressive performance even with an ImageNet pre-trained model without ReID training, reaching mAP/Rank-1 of 52.81/78.92 on Market1501. Moreover, our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks, showcasing strong adaptability.
Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm
Drawing on recent advancements in diffusion models for text-to-image generation, identity-preserved personalization has made significant progress in accurately capturing specific identities with just a single reference image. However, existing methods primarily integrate reference images within the text embedding space, leading to a complex entanglement of image and text information, which poses challenges for preserving both identity fidelity and semantic consistency. To tackle this challenge, we propose Infinite-ID, an ID-semantics decoupling paradigm for identity-preserved personalization. Specifically, we introduce identity-enhanced training, incorporating an additional image cross-attention module to capture sufficient ID information while deactivating the original text cross-attention module of the diffusion model. This ensures that the image stream faithfully represents the identity provided by the reference image while mitigating interference from textual input. Additionally, we introduce a feature interaction mechanism that combines a mixed attention module with an AdaIN-mean operation to seamlessly merge the two streams. This mechanism not only enhances the fidelity of identity and semantic consistency but also enables convenient control over the styles of the generated images. Extensive experimental results on both raw photo generation and style image generation demonstrate the superior performance of our proposed method.
Clothes-Changing Person Re-Identification with Feasibility-Aware Intermediary Matching
Current clothes-changing person re-identification (re-id) approaches usually perform retrieval based on clothes-irrelevant features, while neglecting the potential of clothes-relevant features. However, we observe that relying solely on clothes-irrelevant features for clothes-changing re-id is limited, since they often lack adequate identity information and suffer from large intra-class variations. On the contrary, clothes-relevant features can be used to discover same-clothes intermediaries that possess informative identity clues. Based on this observation, we propose a Feasibility-Aware Intermediary Matching (FAIM) framework to additionally utilize clothes-relevant features for retrieval. Firstly, an Intermediary Matching (IM) module is designed to perform an intermediary-assisted matching process. This process involves using clothes-relevant features to find informative intermediates, and then using clothes-irrelevant features of these intermediates to complete the matching. Secondly, in order to reduce the negative effect of low-quality intermediaries, an Intermediary-Based Feasibility Weighting (IBFW) module is designed to evaluate the feasibility of intermediary matching process by assessing the quality of intermediaries. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on several widely-used clothes-changing re-id benchmarks.
Building and Interpreting Deep Similarity Models
Many learning algorithms such as kernel machines, nearest neighbors, clustering, or anomaly detection, are based on the concept of 'distance' or 'similarity'. Before similarities are used for training an actual machine learning model, we would like to verify that they are bound to meaningful patterns in the data. In this paper, we propose to make similarities interpretable by augmenting them with an explanation in terms of input features. We develop BiLRP, a scalable and theoretically founded method to systematically decompose similarity scores on pairs of input features. Our method can be expressed as a composition of LRP explanations, which were shown in previous works to scale to highly nonlinear functions. Through an extensive set of experiments, we demonstrate that BiLRP robustly explains complex similarity models, e.g. built on VGG-16 deep neural network features. Additionally, we apply our method to an open problem in digital humanities: detailed assessment of similarity between historical documents such as astronomical tables. Here again, BiLRP provides insight and brings verifiability into a highly engineered and problem-specific similarity model.
ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning
The rapid development of diffusion models has triggered diverse applications. Identity-preserving text-to-image generation (ID-T2I) particularly has received significant attention due to its wide range of application scenarios like AI portrait and advertising. While existing ID-T2I methods have demonstrated impressive results, several key challenges remain: (1) It is hard to maintain the identity characteristics of reference portraits accurately, (2) The generated images lack aesthetic appeal especially while enforcing identity retention, and (3) There is a limitation that cannot be compatible with LoRA-based and Adapter-based methods simultaneously. To address these issues, we present ID-Aligner, a general feedback learning framework to enhance ID-T2I performance. To resolve identity features lost, we introduce identity consistency reward fine-tuning to utilize the feedback from face detection and recognition models to improve generated identity preservation. Furthermore, we propose identity aesthetic reward fine-tuning leveraging rewards from human-annotated preference data and automatically constructed feedback on character structure generation to provide aesthetic tuning signals. Thanks to its universal feedback fine-tuning framework, our method can be readily applied to both LoRA and Adapter models, achieving consistent performance gains. Extensive experiments on SD1.5 and SDXL diffusion models validate the effectiveness of our approach. Project Page: \url{https://idaligner.github.io/}
SPeCtrum: A Grounded Framework for Multidimensional Identity Representation in LLM-Based Agent
Existing methods for simulating individual identities often oversimplify human complexity, which may lead to incomplete or flattened representations. To address this, we introduce SPeCtrum, a grounded framework for constructing authentic LLM agent personas by incorporating an individual's multidimensional self-concept. SPeCtrum integrates three core components: Social Identity (S), Personal Identity (P), and Personal Life Context (C), each contributing distinct yet interconnected aspects of identity. To evaluate SPeCtrum's effectiveness in identity representation, we conducted automated and human evaluations. Automated evaluations using popular drama characters showed that Personal Life Context (C)-derived from short essays on preferences and daily routines-modeled characters' identities more effectively than Social Identity (S) and Personal Identity (P) alone and performed comparably to the full SPC combination. In contrast, human evaluations involving real-world individuals found that the full SPC combination provided a more comprehensive self-concept representation than C alone. Our findings suggest that while C alone may suffice for basic identity simulation, integrating S, P, and C enhances the authenticity and accuracy of real-world identity representation. Overall, SPeCtrum offers a structured approach for simulating individuals in LLM agents, enabling more personalized human-AI interactions and improving the realism of simulation-based behavioral studies.
MNet-Sim: A Multi-layered Semantic Similarity Network to Evaluate Sentence Similarity
Similarity is a comparative-subjective measure that varies with the domain within which it is considered. In several NLP applications such as document classification, pattern recognition, chatbot question-answering, sentiment analysis, etc., identifying an accurate similarity score for sentence pairs has become a crucial area of research. In the existing models that assess similarity, the limitation of effectively computing this similarity based on contextual comparisons, the localization due to the centering theory, and the lack of non-semantic textual comparisons have proven to be drawbacks. Hence, this paper presents a multi-layered semantic similarity network model built upon multiple similarity measures that render an overall sentence similarity score based on the principles of Network Science, neighboring weighted relational edges, and a proposed extended node similarity computation formula. The proposed multi-layered network model was evaluated and tested against established state-of-the-art models and is shown to have demonstrated better performance scores in assessing sentence similarity.
Presumed Cultural Identity: How Names Shape LLM Responses
Names are deeply tied to human identity. They can serve as markers of individuality, cultural heritage, and personal history. However, using names as a core indicator of identity can lead to over-simplification of complex identities. When interacting with LLMs, user names are an important point of information for personalisation. Names can enter chatbot conversations through direct user input (requested by chatbots), as part of task contexts such as CV reviews, or as built-in memory features that store user information for personalisation. We study biases associated with names by measuring cultural presumptions in the responses generated by LLMs when presented with common suggestion-seeking queries, which might involve making assumptions about the user. Our analyses demonstrate strong assumptions about cultural identity associated with names present in LLM generations across multiple cultures. Our work has implications for designing more nuanced personalisation systems that avoid reinforcing stereotypes while maintaining meaningful customisation.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
InstantID: Zero-shot Identity-Preserving Generation in Seconds
There has been significant progress in personalized image synthesis with methods such as Textual Inversion, DreamBooth, and LoRA. Yet, their real-world applicability is hindered by high storage demands, lengthy fine-tuning processes, and the need for multiple reference images. Conversely, existing ID embedding-based methods, while requiring only a single forward inference, face challenges: they either necessitate extensive fine-tuning across numerous model parameters, lack compatibility with community pre-trained models, or fail to maintain high face fidelity. Addressing these limitations, we introduce InstantID, a powerful diffusion model-based solution. Our plug-and-play module adeptly handles image personalization in various styles using just a single facial image, while ensuring high fidelity. To achieve this, we design a novel IdentityNet by imposing strong semantic and weak spatial conditions, integrating facial and landmark images with textual prompts to steer the image generation. InstantID demonstrates exceptional performance and efficiency, proving highly beneficial in real-world applications where identity preservation is paramount. Moreover, our work seamlessly integrates with popular pre-trained text-to-image diffusion models like SD1.5 and SDXL, serving as an adaptable plugin. Our codes and pre-trained checkpoints will be available at https://github.com/InstantID/InstantID.
Foundation Cures Personalization: Recovering Facial Personalized Models' Prompt Consistency
Facial personalization represents a crucial downstream task in the domain of text-to-image generation. To preserve identity fidelity while ensuring alignment with user-defined prompts, current mainstream frameworks for facial personalization predominantly employ identity embedding mechanisms to associate identity information with textual embeddings. However, our experiments show that identity embeddings compromise the effectiveness of other tokens within the prompt, thereby hindering high prompt consistency, particularly when prompts involve multiple facial attributes. Moreover, previous works overlook the fact that their corresponding foundation models hold great potential to generate faces aligning to prompts well and can be easily leveraged to cure these ill-aligned attributes in personalized models. Building upon these insights, we propose FreeCure, a training-free framework that harnesses the intrinsic knowledge from the foundation models themselves to improve the prompt consistency of personalization models. First, by extracting cross-attention and semantic maps from the denoising process of foundation models, we identify easily localized attributes (e.g., hair, accessories, etc). Second, we enhance multiple attributes in the outputs of personalization models through a novel noise-blending strategy coupled with an inversion-based process. Our approach offers several advantages: it eliminates the need for training; it effectively facilitates the enhancement for a wide array of facial attributes in a non-intrusive manner; and it can be seamlessly integrated into existing popular personalization models. FreeCure has demonstrated significant improvements in prompt consistency across a diverse set of state-of-the-art facial personalization models while maintaining the integrity of original identity fidelity.
When StyleGAN Meets Stable Diffusion: a W_+ Adapter for Personalized Image Generation
Text-to-image diffusion models have remarkably excelled in producing diverse, high-quality, and photo-realistic images. This advancement has spurred a growing interest in incorporating specific identities into generated content. Most current methods employ an inversion approach to embed a target visual concept into the text embedding space using a single reference image. However, the newly synthesized faces either closely resemble the reference image in terms of facial attributes, such as expression, or exhibit a reduced capacity for identity preservation. Text descriptions intended to guide the facial attributes of the synthesized face may fall short, owing to the intricate entanglement of identity information with identity-irrelevant facial attributes derived from the reference image. To address these issues, we present the novel use of the extended StyleGAN embedding space W_+, to achieve enhanced identity preservation and disentanglement for diffusion models. By aligning this semantically meaningful human face latent space with text-to-image diffusion models, we succeed in maintaining high fidelity in identity preservation, coupled with the capacity for semantic editing. Additionally, we propose new training objectives to balance the influences of both prompt and identity conditions, ensuring that the identity-irrelevant background remains unaffected during facial attribute modifications. Extensive experiments reveal that our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions in diverse settings. Our source code will be available at https://github.com/csxmli2016/w-plus-adapter.
Linking Datasets on Organizations Using Half A Billion Open Collaborated Records
Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").
Aspect-based Document Similarity for Research Papers
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity for research papers. Paper citations indicate the aspect-based similarity, i.e., the section title in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. Our results show SciBERT as the best performing system. A qualitative examination validates our quantitative results. Our findings motivate future research of aspect-based document similarity and the development of a recommender system based on the evaluated techniques. We make our datasets, code, and trained models publicly available.
StableIdentity: Inserting Anybody into Anywhere at First Sight
Recent advances in large pretrained text-to-image models have shown unprecedented capabilities for high-quality human-centric generation, however, customizing face identity is still an intractable problem. Existing methods cannot ensure stable identity preservation and flexible editability, even with several images for each subject during training. In this work, we propose StableIdentity, which allows identity-consistent recontextualization with just one face image. More specifically, we employ a face encoder with an identity prior to encode the input face, and then land the face representation into a space with an editable prior, which is constructed from celeb names. By incorporating identity prior and editability prior, the learned identity can be injected anywhere with various contexts. In addition, we design a masked two-phase diffusion loss to boost the pixel-level perception of the input face and maintain the diversity of generation. Extensive experiments demonstrate our method outperforms previous customization methods. In addition, the learned identity can be flexibly combined with the off-the-shelf modules such as ControlNet. Notably, to the best knowledge, we are the first to directly inject the identity learned from a single image into video/3D generation without finetuning. We believe that the proposed StableIdentity is an important step to unify image, video, and 3D customized generation models.
An Earth Mover's Distance Based Graph Distance Metric For Financial Statements
Quantifying the similarity between a group of companies has proven to be useful for several purposes, including company benchmarking, fraud detection, and searching for investment opportunities. This exercise can be done using a variety of data sources, such as company activity data and financial data. However, ledger account data is widely available and is standardized to a large extent. Such ledger accounts within a financial statement can be represented by means of a tree, i.e. a special type of graph, representing both the values of the ledger accounts and the relationships between them. Given their broad availability and rich information content, financial statements form a prime data source based on which company similarities or distances could be computed. In this paper, we present a graph distance metric that enables one to compute the similarity between the financial statements of two companies. We conduct a comprehensive experimental study using real-world financial data to demonstrate the usefulness of our proposed distance metric. The experimental results show promising results on a number of use cases. This method may be useful for investors looking for investment opportunities, government officials attempting to identify fraudulent companies, and accountants looking to benchmark a group of companies based on their financial statements.
Self-similarity Driven Scale-invariant Learning for Weakly Supervised Person Search
Weakly supervised person search aims to jointly detect and match persons with only bounding box annotations. Existing approaches typically focus on improving the features by exploring relations of persons. However, scale variation problem is a more severe obstacle and under-studied that a person often owns images with different scales (resolutions). On the one hand, small-scale images contain less information of a person, thus affecting the accuracy of the generated pseudo labels. On the other hand, the similarity of cross-scale images is often smaller than that of images with the same scale for a person, which will increase the difficulty of matching. In this paper, we address this problem by proposing a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL). Scale invariance can be explored based on the self-similarity prior that it shows the same statistical properties of an image at different scales. To this end, we introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features by hard exemplars mining. To enhance the discriminative power of the features in an unsupervised manner, we introduce a dynamic multi-label prediction which progressively seeks true labels for training. It is adaptable to different types of unlabeled data and serves as a compensation for clustering based strategy. Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
Large-scale Training Data Search for Object Re-identification
We consider a scenario where we have access to the target domain, but cannot afford on-the-fly training data annotation, and instead would like to construct an alternative training set from a large-scale data pool such that a competitive model can be obtained. We propose a search and pruning (SnP) solution to this training data search problem, tailored to object re-identification (re-ID), an application aiming to match the same object captured by different cameras. Specifically, the search stage identifies and merges clusters of source identities which exhibit similar distributions with the target domain. The second stage, subject to a budget, then selects identities and their images from the Stage I output, to control the size of the resulting training set for efficient training. The two steps provide us with training sets 80\% smaller than the source pool while achieving a similar or even higher re-ID accuracy. These training sets are also shown to be superior to a few existing search methods such as random sampling and greedy sampling under the same budget on training data size. If we release the budget, training sets resulting from the first stage alone allow even higher re-ID accuracy. We provide interesting discussions on the specificity of our method to the re-ID problem and particularly its role in bridging the re-ID domain gap. The code is available at https://github.com/yorkeyao/SnP.
Optimal Transport-based Alignment of Learned Character Representations for String Similarity
String similarity models are vital for record linkage, entity resolution, and search. In this work, we present STANCE --a learned model for computing the similarity of two strings. Our approach encodes the characters of each string, aligns the encodings using Sinkhorn Iteration (alignment is posed as an instance of optimal transport) and scores the alignment with a convolutional neural network. We evaluate STANCE's ability to detect whether two strings can refer to the same entity--a task we term alias detection. We construct five new alias detection datasets (and make them publicly available). We show that STANCE or one of its variants outperforms both state-of-the-art and classic, parameter-free similarity models on four of the five datasets. We also demonstrate STANCE's ability to improve downstream tasks by applying it to an instance of cross-document coreference and show that it leads to a 2.8 point improvement in B^3 F1 over the previous state-of-the-art approach.
SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation
Advanced diffusion-based Text-to-Image (T2I) models, such as the Stable Diffusion Model, have made significant progress in generating diverse and high-quality images using text prompts alone. However, T2I models are unable to accurately map identities (IDs) when non-famous users require personalized image generation. The main problem is that existing T2I models do not learn the ID-image alignments of new users. The previous methods either failed to accurately fit the face region or lost the interactive generative ability with other existing concepts in T2I models (i.e., unable to generate other concepts described in given prompts such as scenes, actions, and facial attributes). In this paper, we focus on accurate and semantic-fidelity ID embedding into the Stable Diffusion Model for personalized generation. We address this challenge from two perspectives: face-wise region fitting, and semantic-fidelity token optimization. Specifically, we first visualize the attention overfit problem, and propose a face-wise attention loss to fit the face region instead of the whole target image. This key trick significantly enhances the ID accuracy and interactive generative ability with other existing concepts. Then, we optimize one ID representation as multiple per-stage tokens where each token contains two disentangled features. This expansion of the textual conditioning space enhances semantic-fidelity control. Extensive experiments validate that our results exhibit superior ID accuracy and manipulation ability compared to previous methods.
IDAdapter: Learning Mixed Features for Tuning-Free Personalization of Text-to-Image Models
Leveraging Stable Diffusion for the generation of personalized portraits has emerged as a powerful and noteworthy tool, enabling users to create high-fidelity, custom character avatars based on their specific prompts. However, existing personalization methods face challenges, including test-time fine-tuning, the requirement of multiple input images, low preservation of identity, and limited diversity in generated outcomes. To overcome these challenges, we introduce IDAdapter, a tuning-free approach that enhances the diversity and identity preservation in personalized image generation from a single face image. IDAdapter integrates a personalized concept into the generation process through a combination of textual and visual injections and a face identity loss. During the training phase, we incorporate mixed features from multiple reference images of a specific identity to enrich identity-related content details, guiding the model to generate images with more diverse styles, expressions, and angles compared to previous works. Extensive evaluations demonstrate the effectiveness of our method, achieving both diversity and identity fidelity in generated images.
Deconfounded Representation Similarity for Comparison of Neural Networks
Similarity metrics such as representational similarity analysis (RSA) and centered kernel alignment (CKA) have been used to compare layer-wise representations between neural networks. However, these metrics are confounded by the population structure of data items in the input space, leading to spuriously high similarity for even completely random neural networks and inconsistent domain relations in transfer learning. We introduce a simple and generally applicable fix to adjust for the confounder with covariate adjustment regression, which retains the intuitive invariance properties of the original similarity measures. We show that deconfounding the similarity metrics increases the resolution of detecting semantically similar neural networks. Moreover, in real-world applications, deconfounding improves the consistency of representation similarities with domain similarities in transfer learning, and increases correlation with out-of-distribution accuracy.
DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability
Recent advancements in text-to-image generation have spurred interest in personalized human image generation, which aims to create novel images featuring specific human identities as reference images indicate. Although existing methods achieve high-fidelity identity preservation, they often struggle with limited multi-ID usability and inadequate facial editability. We present DynamicID, a tuning-free framework supported by a dual-stage training paradigm that inherently facilitates both single-ID and multi-ID personalized generation with high fidelity and flexible facial editability. Our key innovations include: 1) Semantic-Activated Attention (SAA), which employs query-level activation gating to minimize disruption to the original model when injecting ID features and achieve multi-ID personalization without requiring multi-ID samples during training. 2) Identity-Motion Reconfigurator (IMR), which leverages contrastive learning to effectively disentangle and re-entangle facial motion and identity features, thereby enabling flexible facial editing. Additionally, we have developed a curated VariFace-10k facial dataset, comprising 10k unique individuals, each represented by 35 distinct facial images. Experimental results demonstrate that DynamicID outperforms state-of-the-art methods in identity fidelity, facial editability, and multi-ID personalization capability.
MasterWeaver: Taming Editability and Identity for Personalized Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown significant success in personalized text-to-image generation, which aims to generate novel images with human identities indicated by the reference images. Despite promising identity fidelity has been achieved by several tuning-free methods, they usually suffer from overfitting issues. The learned identity tends to entangle with irrelevant information, resulting in unsatisfied text controllability, especially on faces. In this work, we present MasterWeaver, a test-time tuning-free method designed to generate personalized images with both faithful identity fidelity and flexible editability. Specifically, MasterWeaver adopts an encoder to extract identity features and steers the image generation through additional introduced cross attention. To improve editability while maintaining identity fidelity, we propose an editing direction loss for training, which aligns the editing directions of our MasterWeaver with those of the original T2I model. Additionally, a face-augmented dataset is constructed to facilitate disentangled identity learning, and further improve the editability. Extensive experiments demonstrate that our MasterWeaver can not only generate personalized images with faithful identity, but also exhibit superiority in text controllability. Our code will be publicly available at https://github.com/csyxwei/MasterWeaver.
Color Space Learning for Cross-Color Person Re-Identification
The primary color profile of the same identity is assumed to remain consistent in typical Person Re-identification (Person ReID) tasks. However, this assumption may be invalid in real-world situations and images hold variant color profiles, because of cross-modality cameras or identity with different clothing. To address this issue, we propose Color Space Learning (CSL) for those Cross-Color Person ReID problems. Specifically, CSL guides the model to be less color-sensitive with two modules: Image-level Color-Augmentation and Pixel-level Color-Transformation. The first module increases the color diversity of the inputs and guides the model to focus more on the non-color information. The second module projects every pixel of input images onto a new color space. In addition, we introduce a new Person ReID benchmark across RGB and Infrared modalities, NTU-Corridor, which is the first with privacy agreements from all participants. To evaluate the effectiveness and robustness of our proposed CSL, we evaluate it on several Cross-Color Person ReID benchmarks. Our method surpasses the state-of-the-art methods consistently. The code and benchmark are available at: https://github.com/niejiahao1998/CSL
ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving
Diffusion-based technologies have made significant strides, particularly in personalized and customized facialgeneration. However, existing methods face challenges in achieving high-fidelity and detailed identity (ID)consistency, primarily due to insufficient fine-grained control over facial areas and the lack of a comprehensive strategy for ID preservation by fully considering intricate facial details and the overall face. To address these limitations, we introduce ConsistentID, an innovative method crafted for diverseidentity-preserving portrait generation under fine-grained multimodal facial prompts, utilizing only a single reference image. ConsistentID comprises two key components: a multimodal facial prompt generator that combines facial features, corresponding facial descriptions and the overall facial context to enhance precision in facial details, and an ID-preservation network optimized through the facial attention localization strategy, aimed at preserving ID consistency in facial regions. Together, these components significantly enhance the accuracy of ID preservation by introducing fine-grained multimodal ID information from facial regions. To facilitate training of ConsistentID, we present a fine-grained portrait dataset, FGID, with over 500,000 facial images, offering greater diversity and comprehensiveness than existing public facial datasets. % such as LAION-Face, CelebA, FFHQ, and SFHQ. Experimental results substantiate that our ConsistentID achieves exceptional precision and diversity in personalized facial generation, surpassing existing methods in the MyStyle dataset. Furthermore, while ConsistentID introduces more multimodal ID information, it maintains a fast inference speed during generation.
One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.
Enhancing Representation Generalization in Authorship Identification
Authorship identification ascertains the authorship of texts whose origins remain undisclosed. That authorship identification techniques work as reliably as they do has been attributed to the fact that authorial style is properly captured and represented. Although modern authorship identification methods have evolved significantly over the years and have proven effective in distinguishing authorial styles, the generalization of stylistic features across domains has not been systematically reviewed. The presented work addresses the challenge of enhancing the generalization of stylistic representations in authorship identification, particularly when there are discrepancies between training and testing samples. A comprehensive review of empirical studies was conducted, focusing on various stylistic features and their effectiveness in representing an author's style. The influencing factors such as topic, genre, and register on writing style were also explored, along with strategies to mitigate their impact. While some stylistic features, like character n-grams and function words, have proven to be robust and discriminative, others, such as content words, can introduce biases and hinder cross-domain generalization. Representations learned using deep learning models, especially those incorporating character n-grams and syntactic information, show promise in enhancing representation generalization. The findings underscore the importance of selecting appropriate stylistic features for authorship identification, especially in cross-domain scenarios. The recognition of the strengths and weaknesses of various linguistic features paves the way for more accurate authorship identification in diverse contexts.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
LCM-Lookahead for Encoder-based Text-to-Image Personalization
Recent advancements in diffusion models have introduced fast sampling methods that can effectively produce high-quality images in just one or a few denoising steps. Interestingly, when these are distilled from existing diffusion models, they often maintain alignment with the original model, retaining similar outputs for similar prompts and seeds. These properties present opportunities to leverage fast sampling methods as a shortcut-mechanism, using them to create a preview of denoised outputs through which we can backpropagate image-space losses. In this work, we explore the potential of using such shortcut-mechanisms to guide the personalization of text-to-image models to specific facial identities. We focus on encoder-based personalization approaches, and demonstrate that by tuning them with a lookahead identity loss, we can achieve higher identity fidelity, without sacrificing layout diversity or prompt alignment. We further explore the use of attention sharing mechanisms and consistent data generation for the task of personalization, and find that encoder training can benefit from both.
CharacterFactory: Sampling Consistent Characters with GANs for Diffusion Models
Recent advances in text-to-image models have opened new frontiers in human-centric generation. However, these models cannot be directly employed to generate images with consistent newly coined identities. In this work, we propose CharacterFactory, a framework that allows sampling new characters with consistent identities in the latent space of GANs for diffusion models. More specifically, we consider the word embeddings of celeb names as ground truths for the identity-consistent generation task and train a GAN model to learn the mapping from a latent space to the celeb embedding space. In addition, we design a context-consistent loss to ensure that the generated identity embeddings can produce identity-consistent images in various contexts. Remarkably, the whole model only takes 10 minutes for training, and can sample infinite characters end-to-end during inference. Extensive experiments demonstrate excellent performance of the proposed CharacterFactory on character creation in terms of identity consistency and editability. Furthermore, the generated characters can be seamlessly combined with the off-the-shelf image/video/3D diffusion models. We believe that the proposed CharacterFactory is an important step for identity-consistent character generation. Project page is available at: https://qinghew.github.io/CharacterFactory/.
Unsupervised Deep Features for Remote Sensing Image Matching via Discriminator Network
The advent of deep perceptual networks brought about a paradigm shift in machine vision and image perception. Image apprehension lately carried out by hand-crafted features in the latent space have been replaced by deep features acquired from supervised networks for improved understanding. However, such deep networks require strict supervision with a substantial amount of the labeled data for authentic training process. These methods perform poorly in domains lacking labeled data especially in case of remote sensing image retrieval. Resolving this, we propose an unsupervised encoder-decoder feature for remote sensing image matching (RSIM). Moreover, we replace the conventional distance metrics with a deep discriminator network to identify the similarity of the image pairs. To the best of our knowledge, discriminator network has never been used before for solving RSIM problem. Results have been validated with two publicly available benchmark remote sensing image datasets. The technique has also been investigated for content-based remote sensing image retrieval (CBRSIR); one of the widely used applications of RSIM. Results demonstrate that our technique supersedes the state-of-the-art methods used for unsupervised image matching with mean average precision (mAP) of 81%, and image retrieval with an overall improvement in mAP score of about 12%.
Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs
People increasingly search online for answers to their medical questions but the rate at which medical questions are asked online significantly exceeds the capacity of qualified people to answer them. This leaves many questions unanswered or inadequately answered. Many of these questions are not unique, and reliable identification of similar questions would enable more efficient and effective question answering schema. COVID-19 has only exacerbated this problem. Almost every government agency and healthcare organization has tried to meet the informational need of users by building online FAQs, but there is no way for people to ask their question and know if it is answered on one of these pages. While many research efforts have focused on the problem of general question similarity, these approaches do not generalize well to domains that require expert knowledge to determine semantic similarity, such as the medical domain. In this paper, we show how a double fine-tuning approach of pretraining a neural network on medical question-answer pairs followed by fine-tuning on medical question-question pairs is a particularly useful intermediate task for the ultimate goal of determining medical question similarity. While other pretraining tasks yield an accuracy below 78.7% on this task, our model achieves an accuracy of 82.6% with the same number of training examples, an accuracy of 80.0% with a much smaller training set, and an accuracy of 84.5% when the full corpus of medical question-answer data is used. We also describe a currently live system that uses the trained model to match user questions to COVID-related FAQs.
PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding
Recent advances in text-to-image generation have made remarkable progress in synthesizing realistic human photos conditioned on given text prompts. However, existing personalized generation methods cannot simultaneously satisfy the requirements of high efficiency, promising identity (ID) fidelity, and flexible text controllability. In this work, we introduce PhotoMaker, an efficient personalized text-to-image generation method, which mainly encodes an arbitrary number of input ID images into a stack ID embedding for preserving ID information. Such an embedding, serving as a unified ID representation, can not only encapsulate the characteristics of the same input ID comprehensively, but also accommodate the characteristics of different IDs for subsequent integration. This paves the way for more intriguing and practically valuable applications. Besides, to drive the training of our PhotoMaker, we propose an ID-oriented data construction pipeline to assemble the training data. Under the nourishment of the dataset constructed through the proposed pipeline, our PhotoMaker demonstrates better ID preservation ability than test-time fine-tuning based methods, yet provides significant speed improvements, high-quality generation results, strong generalization capabilities, and a wide range of applications. Our project page is available at https://photo-maker.github.io/
BlendFace: Re-designing Identity Encoders for Face-Swapping
The great advancements of generative adversarial networks and face recognition models in computer vision have made it possible to swap identities on images from single sources. Although a lot of studies seems to have proposed almost satisfactory solutions, we notice previous methods still suffer from an identity-attribute entanglement that causes undesired attributes swapping because widely used identity encoders, eg, ArcFace, have some crucial attribute biases owing to their pretraining on face recognition tasks. To address this issue, we design BlendFace, a novel identity encoder for face-swapping. The key idea behind BlendFace is training face recognition models on blended images whose attributes are replaced with those of another mitigates inter-personal biases such as hairsyles. BlendFace feeds disentangled identity features into generators and guides generators properly as an identity loss function. Extensive experiments demonstrate that BlendFace improves the identity-attribute disentanglement in face-swapping models, maintaining a comparable quantitative performance to previous methods.
REGNav: Room Expert Guided Image-Goal Navigation
Image-goal navigation aims to steer an agent towards the goal location specified by an image. Most prior methods tackle this task by learning a navigation policy, which extracts visual features of goal and observation images, compares their similarity and predicts actions. However, if the agent is in a different room from the goal image, it's extremely challenging to identify their similarity and infer the likely goal location, which may result in the agent wandering around. Intuitively, when humans carry out this task, they may roughly compare the current observation with the goal image, having an approximate concept of whether they are in the same room before executing the actions. Inspired by this intuition, we try to imitate human behaviour and propose a Room Expert Guided Image-Goal Navigation model (REGNav) to equip the agent with the ability to analyze whether goal and observation images are taken in the same room. Specifically, we first pre-train a room expert with an unsupervised learning technique on the self-collected unlabelled room images. The expert can extract the hidden room style information of goal and observation images and predict their relationship about whether they belong to the same room. In addition, two different fusion approaches are explored to efficiently guide the agent navigation with the room relation knowledge. Extensive experiments show that our REGNav surpasses prior state-of-the-art works on three popular benchmarks.
FaceStudio: Put Your Face Everywhere in Seconds
This study investigates identity-preserving image synthesis, an intriguing task in image generation that seeks to maintain a subject's identity while adding a personalized, stylistic touch. Traditional methods, such as Textual Inversion and DreamBooth, have made strides in custom image creation, but they come with significant drawbacks. These include the need for extensive resources and time for fine-tuning, as well as the requirement for multiple reference images. To overcome these challenges, our research introduces a novel approach to identity-preserving synthesis, with a particular focus on human images. Our model leverages a direct feed-forward mechanism, circumventing the need for intensive fine-tuning, thereby facilitating quick and efficient image generation. Central to our innovation is a hybrid guidance framework, which combines stylized images, facial images, and textual prompts to guide the image generation process. This unique combination enables our model to produce a variety of applications, such as artistic portraits and identity-blended images. Our experimental results, including both qualitative and quantitative evaluations, demonstrate the superiority of our method over existing baseline models and previous works, particularly in its remarkable efficiency and ability to preserve the subject's identity with high fidelity.
Imagine yourself: Tuning-Free Personalized Image Generation
Diffusion models have demonstrated remarkable efficacy across various image-to-image tasks. In this research, we introduce Imagine yourself, a state-of-the-art model designed for personalized image generation. Unlike conventional tuning-based personalization techniques, Imagine yourself operates as a tuning-free model, enabling all users to leverage a shared framework without individualized adjustments. Moreover, previous work met challenges balancing identity preservation, following complex prompts and preserving good visual quality, resulting in models having strong copy-paste effect of the reference images. Thus, they can hardly generate images following prompts that require significant changes to the reference image, \eg, changing facial expression, head and body poses, and the diversity of the generated images is low. To address these limitations, our proposed method introduces 1) a new synthetic paired data generation mechanism to encourage image diversity, 2) a fully parallel attention architecture with three text encoders and a fully trainable vision encoder to improve the text faithfulness, and 3) a novel coarse-to-fine multi-stage finetuning methodology that gradually pushes the boundary of visual quality. Our study demonstrates that Imagine yourself surpasses the state-of-the-art personalization model, exhibiting superior capabilities in identity preservation, visual quality, and text alignment. This model establishes a robust foundation for various personalization applications. Human evaluation results validate the model's SOTA superiority across all aspects (identity preservation, text faithfulness, and visual appeal) compared to the previous personalization models.
GeneCIS: A Benchmark for General Conditional Image Similarity
We argue that there are many notions of 'similarity' and that models, like humans, should be able to adapt to these dynamically. This contrasts with most representation learning methods, supervised or self-supervised, which learn a fixed embedding function and hence implicitly assume a single notion of similarity. For instance, models trained on ImageNet are biased towards object categories, while a user might prefer the model to focus on colors, textures or specific elements in the scene. In this paper, we propose the GeneCIS ('genesis') benchmark, which measures models' ability to adapt to a range of similarity conditions. Extending prior work, our benchmark is designed for zero-shot evaluation only, and hence considers an open-set of similarity conditions. We find that baselines from powerful CLIP models struggle on GeneCIS and that performance on the benchmark is only weakly correlated with ImageNet accuracy, suggesting that simply scaling existing methods is not fruitful. We further propose a simple, scalable solution based on automatically mining information from existing image-caption datasets. We find our method offers a substantial boost over the baselines on GeneCIS, and further improves zero-shot performance on related image retrieval benchmarks. In fact, though evaluated zero-shot, our model surpasses state-of-the-art supervised models on MIT-States. Project page at https://sgvaze.github.io/genecis/.
DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
CCPA: Long-term Person Re-Identification via Contrastive Clothing and Pose Augmentation
Long-term Person Re-Identification (LRe-ID) aims at matching an individual across cameras after a long period of time, presenting variations in clothing, pose, and viewpoint. In this work, we propose CCPA: Contrastive Clothing and Pose Augmentation framework for LRe-ID. Beyond appearance, CCPA captures body shape information which is cloth-invariant using a Relation Graph Attention Network. Training a robust LRe-ID model requires a wide range of clothing variations and expensive cloth labeling, which is lacked in current LRe-ID datasets. To address this, we perform clothing and pose transfer across identities to generate images of more clothing variations and of different persons wearing similar clothing. The augmented batch of images serve as inputs to our proposed Fine-grained Contrastive Losses, which not only supervise the Re-ID model to learn discriminative person embeddings under long-term scenarios but also ensure in-distribution data generation. Results on LRe-ID datasets demonstrate the effectiveness of our CCPA framework.
Efficient Discovery and Effective Evaluation of Visual Perceptual Similarity: A Benchmark and Beyond
Visual similarities discovery (VSD) is an important task with broad e-commerce applications. Given an image of a certain object, the goal of VSD is to retrieve images of different objects with high perceptual visual similarity. Although being a highly addressed problem, the evaluation of proposed methods for VSD is often based on a proxy of an identification-retrieval task, evaluating the ability of a model to retrieve different images of the same object. We posit that evaluating VSD methods based on identification tasks is limited, and faithful evaluation must rely on expert annotations. In this paper, we introduce the first large-scale fashion visual similarity benchmark dataset, consisting of more than 110K expert-annotated image pairs. Besides this major contribution, we share insight from the challenges we faced while curating this dataset. Based on these insights, we propose a novel and efficient labeling procedure that can be applied to any dataset. Our analysis examines its limitations and inductive biases, and based on these findings, we propose metrics to mitigate those limitations. Though our primary focus lies on visual similarity, the methodologies we present have broader applications for discovering and evaluating perceptual similarity across various domains.
IDiff-Face: Synthetic-based Face Recognition through Fizzy Identity-Conditioned Diffusion Models
The availability of large-scale authentic face databases has been crucial to the significant advances made in face recognition research over the past decade. However, legal and ethical concerns led to the recent retraction of many of these databases by their creators, raising questions about the continuity of future face recognition research without one of its key resources. Synthetic datasets have emerged as a promising alternative to privacy-sensitive authentic data for face recognition development. However, recent synthetic datasets that are used to train face recognition models suffer either from limitations in intra-class diversity or cross-class (identity) discrimination, leading to less optimal accuracies, far away from the accuracies achieved by models trained on authentic data. This paper targets this issue by proposing IDiff-Face, a novel approach based on conditional latent diffusion models for synthetic identity generation with realistic identity variations for face recognition training. Through extensive evaluations, our proposed synthetic-based face recognition approach pushed the limits of state-of-the-art performances, achieving, for example, 98.00% accuracy on the Labeled Faces in the Wild (LFW) benchmark, far ahead from the recent synthetic-based face recognition solutions with 95.40% and bridging the gap to authentic-based face recognition with 99.82% accuracy.
Cross-video Identity Correlating for Person Re-identification Pre-training
Recent researches have proven that pre-training on large-scale person images extracted from internet videos is an effective way in learning better representations for person re-identification. However, these researches are mostly confined to pre-training at the instance-level or single-video tracklet-level. They ignore the identity-invariance in images of the same person across different videos, which is a key focus in person re-identification. To address this issue, we propose a Cross-video Identity-cOrrelating pre-traiNing (CION) framework. Defining a noise concept that comprehensively considers both intra-identity consistency and inter-identity discrimination, CION seeks the identity correlation from cross-video images by modeling it as a progressive multi-level denoising problem. Furthermore, an identity-guided self-distillation loss is proposed to implement better large-scale pre-training by mining the identity-invariance within person images. We conduct extensive experiments to verify the superiority of our CION in terms of efficiency and performance. CION achieves significantly leading performance with even fewer training samples. For example, compared with the previous state-of-the-art~ISR, CION with the same ResNet50-IBN achieves higher mAP of 93.3\% and 74.3\% on Market1501 and MSMT17, while only utilizing 8\% training samples. Finally, with CION demonstrating superior model-agnostic ability, we contribute a model zoo named ReIDZoo to meet diverse research and application needs in this field. It contains a series of CION pre-trained models with spanning structures and parameters, totaling 32 models with 10 different structures, including GhostNet, ConvNext, RepViT, FastViT and so on. The code and models will be made publicly available at https://github.com/Zplusdragon/CION_ReIDZoo.
Inserting Anybody in Diffusion Models via Celeb Basis
Exquisite demand exists for customizing the pretrained large text-to-image model, e.g., Stable Diffusion, to generate innovative concepts, such as the users themselves. However, the newly-added concept from previous customization methods often shows weaker combination abilities than the original ones even given several images during training. We thus propose a new personalization method that allows for the seamless integration of a unique individual into the pre-trained diffusion model using just one facial photograph and only 1024 learnable parameters under 3 minutes. So as we can effortlessly generate stunning images of this person in any pose or position, interacting with anyone and doing anything imaginable from text prompts. To achieve this, we first analyze and build a well-defined celeb basis from the embedding space of the pre-trained large text encoder. Then, given one facial photo as the target identity, we generate its own embedding by optimizing the weight of this basis and locking all other parameters. Empowered by the proposed celeb basis, the new identity in our customized model showcases a better concept combination ability than previous personalization methods. Besides, our model can also learn several new identities at once and interact with each other where the previous customization model fails to. The code will be released.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
Recommender Systems with Generative Retrieval
Modern recommender systems leverage large-scale retrieval models consisting of two stages: training a dual-encoder model to embed queries and candidates in the same space, followed by an Approximate Nearest Neighbor (ANN) search to select top candidates given a query's embedding. In this paper, we propose a new single-stage paradigm: a generative retrieval model which autoregressively decodes the identifiers for the target candidates in one phase. To do this, instead of assigning randomly generated atomic IDs to each item, we generate Semantic IDs: a semantically meaningful tuple of codewords for each item that serves as its unique identifier. We use a hierarchical method called RQ-VAE to generate these codewords. Once we have the Semantic IDs for all the items, a Transformer based sequence-to-sequence model is trained to predict the Semantic ID of the next item. Since this model predicts the tuple of codewords identifying the next item directly in an autoregressive manner, it can be considered a generative retrieval model. We show that our recommender system trained in this new paradigm improves the results achieved by current SOTA models on the Amazon dataset. Moreover, we demonstrate that the sequence-to-sequence model coupled with hierarchical Semantic IDs offers better generalization and hence improves retrieval of cold-start items for recommendations.
Learning Generalisable Omni-Scale Representations for Person Re-Identification
An effective person re-identification (re-ID) model should learn feature representations that are both discriminative, for distinguishing similar-looking people, and generalisable, for deployment across datasets without any adaptation. In this paper, we develop novel CNN architectures to address both challenges. First, we present a re-ID CNN termed omni-scale network (OSNet) to learn features that not only capture different spatial scales but also encapsulate a synergistic combination of multiple scales, namely omni-scale features. The basic building block consists of multiple convolutional streams, each detecting features at a certain scale. For omni-scale feature learning, a unified aggregation gate is introduced to dynamically fuse multi-scale features with channel-wise weights. OSNet is lightweight as its building blocks comprise factorised convolutions. Second, to improve generalisable feature learning, we introduce instance normalisation (IN) layers into OSNet to cope with cross-dataset discrepancies. Further, to determine the optimal placements of these IN layers in the architecture, we formulate an efficient differentiable architecture search algorithm. Extensive experiments show that, in the conventional same-dataset setting, OSNet achieves state-of-the-art performance, despite being much smaller than existing re-ID models. In the more challenging yet practical cross-dataset setting, OSNet beats most recent unsupervised domain adaptation methods without using any target data. Our code and models are released at https://github.com/KaiyangZhou/deep-person-reid.
Words are all you need? Language as an approximation for human similarity judgments
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.
CopyScope: Model-level Copyright Infringement Quantification in the Diffusion Workflow
Web-based AI image generation has become an innovative art form that can generate novel artworks with the rapid development of the diffusion model. However, this new technique brings potential copyright infringement risks as it may incorporate the existing artworks without the owners' consent. Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability. Previous work only focused on data attribution from the training data perspective, which is unsuitable for tracing and quantifying copyright infringement in practice because of the following reasons: (1) the training datasets are not always available in public; (2) the model provider is the responsible party, not the image. Motivated by this, in this paper, we propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level. We first rigorously identify pivotal components within the AI image generation pipeline. Then, we propose to take advantage of Fr\'echet Inception Distance (FID) to effectively capture the image similarity that fits human perception naturally. We further propose the FID-based Shapley algorithm to evaluate the infringement contribution among models. Extensive experiments demonstrate that our work not only reveals the intricacies of infringement quantification but also effectively depicts the infringing models quantitatively, thus promoting accountability in AI image-generation tasks.
'Tis but Thy Name: Semantic Question Answering Evaluation with 11M Names for 1M Entities
Classic lexical-matching-based QA metrics are slowly being phased out because they punish succinct or informative outputs just because those answers were not provided as ground truth. Recently proposed neural metrics can evaluate semantic similarity but were trained on small textual similarity datasets grafted from foreign domains. We introduce the Wiki Entity Similarity (WES) dataset, an 11M example, domain targeted, semantic entity similarity dataset that is generated from link texts in Wikipedia. WES is tailored to QA evaluation: the examples are entities and phrases and grouped into semantic clusters to simulate multiple ground-truth labels. Human annotators consistently agree with WES labels, and a basic cross encoder metric is better than four classic metrics at predicting human judgments of correctness.
Weakly-Supervised Conditional Embedding for Referred Visual Search
This paper presents a new approach to image similarity search in the context of fashion, a domain with inherent ambiguity due to the multiple ways in which images can be considered similar. We introduce the concept of Referred Visual Search (RVS), where users provide additional information to define the desired similarity. We present a new dataset, LAION-RVS-Fashion, consisting of 272K fashion products with 842K images extracted from LAION, designed explicitly for this task. We then propose an innovative method for learning conditional embeddings using weakly-supervised training, achieving a 6% increase in Recall at one (R@1) against a gallery with 2M distractors, compared to classical approaches based on explicit attention and filtering. The proposed method demonstrates robustness, maintaining similar R@1 when dealing with 2.5 times as many distractors as the baseline methods. We believe this is a step forward in the emerging field of Referred Visual Search both in terms of accessible data and approach. Code, data and models are available at https://www.github.com/Simon-Lepage/CondViT-LRVSF .
CSTS: Conditional Semantic Textual Similarity
Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball." (both upward) and lower for "The size of the ball." (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.
Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems
The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models.
Time-Efficient and Identity-Consistent Virtual Try-On Using A Variant of Altered Diffusion Models
This study discusses the critical issues of Virtual Try-On in contemporary e-commerce and the prospective metaverse, emphasizing the challenges of preserving intricate texture details and distinctive features of the target person and the clothes in various scenarios, such as clothing texture and identity characteristics like tattoos or accessories. In addition to the fidelity of the synthesized images, the efficiency of the synthesis process presents a significant hurdle. Various existing approaches are explored, highlighting the limitations and unresolved aspects, e.g., identity information omission, uncontrollable artifacts, and low synthesis speed. It then proposes a novel diffusion-based solution that addresses garment texture preservation and user identity retention during virtual try-on. The proposed network comprises two primary modules - a warping module aligning clothing with individual features and a try-on module refining the attire and generating missing parts integrated with a mask-aware post-processing technique ensuring the integrity of the individual's identity. It demonstrates impressive results, surpassing the state-of-the-art in speed by nearly 20 times during inference, with superior fidelity in qualitative assessments. Quantitative evaluations confirm comparable performance with the recent SOTA method on the VITON-HD and Dresscode datasets.
Specialized Document Embeddings for Aspect-based Similarity of Research Papers
Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.
Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval
Same-style products retrieval plays an important role in e-commerce platforms, aiming to identify the same products which may have different text descriptions or images. It can be used for similar products retrieval from different suppliers or duplicate products detection of one supplier. Common methods use the image as the detected object, but they only consider the visual features and overlook the attribute information contained in the textual descriptions, and perform weakly for products in image less important industries like machinery, hardware tools and electronic component, even if an additional text matching module is added. In this paper, we propose a unified vision-language modeling method for e-commerce same-style products retrieval, which is designed to represent one product with its textual descriptions and visual contents. It contains one sampling skill to collect positive pairs from user click log with category and relevance constrained, and a novel contrastive loss unit to model the image, text, and image+text representations into one joint embedding space. It is capable of cross-modal product-to-product retrieval, as well as style transfer and user-interactive search. Offline evaluations on annotated data demonstrate its superior retrieval performance, and online testings show it can attract more clicks and conversions. Moreover, this model has already been deployed online for similar products retrieval in alibaba.com, the largest B2B e-commerce platform in the world.
An Open-World, Diverse, Cross-Spatial-Temporal Benchmark for Dynamic Wild Person Re-Identification
Person re-identification (ReID) has made great strides thanks to the data-driven deep learning techniques. However, the existing benchmark datasets lack diversity, and models trained on these data cannot generalize well to dynamic wild scenarios. To meet the goal of improving the explicit generalization of ReID models, we develop a new Open-World, Diverse, Cross-Spatial-Temporal dataset named OWD with several distinct features. 1) Diverse collection scenes: multiple independent open-world and highly dynamic collecting scenes, including streets, intersections, shopping malls, etc. 2) Diverse lighting variations: long time spans from daytime to nighttime with abundant illumination changes. 3) Diverse person status: multiple camera networks in all seasons with normal/adverse weather conditions and diverse pedestrian appearances (e.g., clothes, personal belongings, poses, etc.). 4) Protected privacy: invisible faces for privacy critical applications. To improve the implicit generalization of ReID, we further propose a Latent Domain Expansion (LDE) method to develop the potential of source data, which decouples discriminative identity-relevant and trustworthy domain-relevant features and implicitly enforces domain-randomized identity feature space expansion with richer domain diversity to facilitate domain invariant representations. Our comprehensive evaluations with most benchmark datasets in the community are crucial for progress, although this work is far from the grand goal toward open-world and dynamic wild applications.
LIPE: Learning Personalized Identity Prior for Non-rigid Image Editing
Although recent years have witnessed significant advancements in image editing thanks to the remarkable progress of text-to-image diffusion models, the problem of non-rigid image editing still presents its complexities and challenges. Existing methods often fail to achieve consistent results due to the absence of unique identity characteristics. Thus, learning a personalized identity prior might help with consistency in the edited results. In this paper, we explore a novel task: learning the personalized identity prior for text-based non-rigid image editing. To address the problems in jointly learning prior and editing the image, we present LIPE, a two-stage framework designed to customize the generative model utilizing a limited set of images of the same subject, and subsequently employ the model with learned prior for non-rigid image editing. Experimental results demonstrate the advantages of our approach in various editing scenarios over past related leading methods in qualitative and quantitative ways.
MovieNet-PS: A Large-Scale Person Search Dataset in the Wild
Person search aims to jointly localize and identify a query person from natural, uncropped images, which has been actively studied over the past few years. In this paper, we delve into the rich context information globally and locally surrounding the target person, which we refer to as scene and group context, respectively. Unlike previous works that treat the two types of context individually, we exploit them in a unified global-local context network (GLCNet) with the intuitive aim of feature enhancement. Specifically, re-ID embeddings and context features are simultaneously learned in a multi-stage fashion, ultimately leading to enhanced, discriminative features for person search. We conduct the experiments on two person search benchmarks (i.e., CUHK-SYSU and PRW) as well as extend our approach to a more challenging setting (i.e., character search on MovieNet). Extensive experimental results demonstrate the consistent improvement of the proposed GLCNet over the state-of-the-art methods on all three datasets. Our source codes, pre-trained models, and the new dataset are publicly available at: https://github.com/ZhengPeng7/GLCNet.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
Modality Unifying Network for Visible-Infrared Person Re-Identification
Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.
PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central
Objective: Data unavailability has been one of the biggest barriers in clinical natural language processing. This paper is aimed at providing a large-scale and publicly available patient note dataset, named PMC-Patients, with relevant articles and similar patients annotations. The ultimate goal of PMC-Patients is to facilitate the development of retrieval-based clinical decision support systems. Materials and Methods: To collect PMC-Patients, we extract patient notes from case reports in PubMed Central by recognizing certain section patterns. Patient-article relevance and patient-patient similarity are annotated by citation relationships in PubMed. In addition, we perform three tasks with PMC-Patients to demonstrate its utility in providing clinical decision support for a given patient, including (1) classifying whether another patient is similar, (2) retrieving similar patients in PMC-Patients, and (3) retrieving relevant articles in PubMed. Results: We collect and release PMC-Patients under the CC BY-NC-SA license, which becomes the largest publicly available patient note dataset so far. PMC-Patients contains 167k patient notes that are annotated with 3.1M relevant articles and 293k similar patients. Qualitative and quantitative analyses reveal the high quality and richness of our dataset. Experiments show that classifying the similarity of patient pairs is relatively easy, but it is hard to retrieve similar patients or relevant articles for a given patient from a large set of candidates. Conclusion: We present PMC-Patients, a large-scale dataset of patient notes with high quality, easy access, diverse conditions, and rich annotations. The proposed dataset can also serve as a hard benchmark for evaluating retrieval-based clinical decision support systems.
Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos
Modern generators render talking-head videos with impressive levels of photorealism, ushering in new user experiences such as videoconferencing under constrained bandwidth budgets. Their safe adoption, however, requires a mechanism to verify if the rendered video is trustworthy. For instance, for videoconferencing we must identify cases in which a synthetic video portrait uses the appearance of an individual without their consent. We term this task avatar fingerprinting. We propose to tackle it by leveraging facial motion signatures unique to each person. Specifically, we learn an embedding in which the motion signatures of one identity are grouped together, and pushed away from those of other identities, regardless of the appearance in the synthetic video. Avatar fingerprinting algorithms will be critical as talking head generators become more ubiquitous, and yet no large scale datasets exist for this new task. Therefore, we contribute a large dataset of people delivering scripted and improvised short monologues, accompanied by synthetic videos in which we render videos of one person using the facial appearance of another. Project page: https://research.nvidia.com/labs/nxp/avatar-fingerprinting/.
Deployment of a Blockchain-Based Self-Sovereign Identity
Digital identity is unsolved: after many years of research there is still no trusted communication over the Internet. To provide identity within the context of mutual distrust, this paper presents a blockchain-based digital identity solution. Without depending upon a single trusted third party, the proposed solution achieves passport-level legally valid identity. This solution for making identities Self-Sovereign, builds on a generic provable claim model for which attestations of truth from third parties need to be collected. The claim model is then shown to be both blockchain structure and proof method agnostic. Four different implementations in support of these two claim model properties are shown to offer sub-second performance for claim creation and claim verification. Through the properties of Self-Sovereign Identity, legally valid status and acceptable performance, our solution is considered to be fit for adoption by the general public.
Omni-ID: Holistic Identity Representation Designed for Generative Tasks
We introduce Omni-ID, a novel facial representation designed specifically for generative tasks. Omni-ID encodes holistic information about an individual's appearance across diverse expressions and poses within a fixed-size representation. It consolidates information from a varied number of unstructured input images into a structured representation, where each entry represents certain global or local identity features. Our approach uses a few-to-many identity reconstruction training paradigm, where a limited set of input images is used to reconstruct multiple target images of the same individual in various poses and expressions. A multi-decoder framework is further employed to leverage the complementary strengths of diverse decoders during training. Unlike conventional representations, such as CLIP and ArcFace, which are typically learned through discriminative or contrastive objectives, Omni-ID is optimized with a generative objective, resulting in a more comprehensive and nuanced identity capture for generative tasks. Trained on our MFHQ dataset -- a multi-view facial image collection, Omni-ID demonstrates substantial improvements over conventional representations across various generative tasks.
Adaptive Multi-head Contrastive Learning
In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.
DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations
Existing person re-identification models often have low generalizability, which is mostly due to limited availability of large-scale labeled data in training. However, labeling large-scale training data is very expensive and time-consuming, while large-scale synthetic dataset shows promising value in learning generalizable person re-identification models. Therefore, in this paper a novel and practical person re-identification task is proposed,i.e. how to use labeled synthetic dataset and unlabeled real-world dataset to train a universal model. In this way, human annotations are no longer required, and it is scalable to large and diverse real-world datasets. To address the task, we introduce a framework with high generalizability, namely DomainMix. Specifically, the proposed method firstly clusters the unlabeled real-world images and selects the reliable clusters. During training, to address the large domain gap between two domains, a domain-invariant feature learning method is proposed, which introduces a new loss,i.e. domain balance loss, to conduct an adversarial learning between domain-invariant feature learning and domain discrimination, and meanwhile learns a discriminative feature for person re-identification. This way, the domain gap between synthetic and real-world data is much reduced, and the learned feature is generalizable thanks to the large-scale and diverse training data. Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations, which is quite promising. In addition, it achieves the current state of the art on several person re-identification datasets under direct cross-dataset evaluation.
ULMRec: User-centric Large Language Model for Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated promising performance in sequential recommendation tasks, leveraging their superior language understanding capabilities. However, existing LLM-based recommendation approaches predominantly focus on modeling item-level co-occurrence patterns while failing to adequately capture user-level personalized preferences. This is problematic since even users who display similar behavioral patterns (e.g., clicking or purchasing similar items) may have fundamentally different underlying interests. To alleviate this problem, in this paper, we propose ULMRec, a framework that effectively integrates user personalized preferences into LLMs for sequential recommendation. Considering there has the semantic gap between item IDs and LLMs, we replace item IDs with their corresponding titles in user historical behaviors, enabling the model to capture the item semantics. For integrating the user personalized preference, we design two key components: (1) user indexing: a personalized user indexing mechanism that leverages vector quantization on user reviews and user IDs to generate meaningful and unique user representations, and (2) alignment tuning: an alignment-based tuning stage that employs comprehensive preference alignment tasks to enhance the model's capability in capturing personalized information. Through this design, ULMRec achieves deep integration of language semantics with user personalized preferences, facilitating effective adaptation to recommendation. Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods, validating the effectiveness of our approach.
Prompt Engineering for Transformer-based Chemical Similarity Search Identifies Structurally Distinct Functional Analogues
Chemical similarity searches are widely used in-silico methods for identifying new drug-like molecules. These methods have historically relied on structure-based comparisons to compute molecular similarity. Here, we use a chemical language model to create a vector-based chemical search. We extend implementations by creating a prompt engineering strategy that utilizes two different chemical string representation algorithms: one for the query and the other for the database. We explore this method by reviewing the search results from five drug-like query molecules (penicillin G, nirmatrelvir, zidovudine, lysergic acid diethylamide, and fentanyl) and three dye-like query molecules (acid blue 25, avobenzone, and 2-diphenylaminocarbazole). We find that this novel method identifies molecules that are functionally similar to the query, indicated by the associated patent literature, and that many of these molecules are structurally distinct from the query, making them unlikely to be found with traditional chemical similarity search methods. This method may aid in the discovery of novel structural classes of molecules that achieve target functionality.
Handling Large-scale Cardinality in building recommendation systems
Effective recommendation systems rely on capturing user preferences, often requiring incorporating numerous features such as universally unique identifiers (UUIDs) of entities. However, the exceptionally high cardinality of UUIDs poses a significant challenge in terms of model degradation and increased model size due to sparsity. This paper presents two innovative techniques to address the challenge of high cardinality in recommendation systems. Specifically, we propose a bag-of-words approach, combined with layer sharing, to substantially decrease the model size while improving performance. Our techniques were evaluated through offline and online experiments on Uber use cases, resulting in promising results demonstrating our approach's effectiveness in optimizing recommendation systems and enhancing their overall performance.
Cross-level Requirement Traceability: A Novel Approach Integrating Bag-of-Words and Word Embedding for Enhanced Similarity Functionality
Requirement traceability is the process of identifying the inter-dependencies between requirements. It poses a significant challenge when conducted manually, especially when dealing with requirements at various levels of abstraction. In this work, we propose a novel approach to automate the task of linking high-level business requirements with more technical system requirements. The proposed approach begins by representing each requirement using a Bag of-Words (BOW) model combined with the Term Frequency-Inverse Document Frequency (TF-IDF) scoring function. Then, we suggested an enhanced cosine similarity that uses recent advances in word embedding representation to correct traditional cosine similarity function limitations. To evaluate the effectiveness of our approach, we conducted experiments on three well-known datasets: COEST, WARC(NFR), and WARC(FRS). The results demonstrate that our approach significantly improves efficiency compared to existing methods. We achieved better results with an increase of approximately 18.4% in one of the datasets, as measured by the F2 score.
AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library
This paper describes our winning contribution to SemEval 2018 Task 4: Character Identification on Multiparty Dialogues. It is a simple, standard model with one key innovation, an entity library. Our results show that this innovation greatly facilitates the identification of infrequent characters. Because of the generic nature of our model, this finding is potentially relevant to any task that requires effective learning from sparse or unbalanced data.
Detecting Mode Collapse in Language Models via Narration
No two authors write alike. Personal flourishes invoked in written narratives, from lexicon to rhetorical devices, imply a particular author--what literary theorists label the implied or virtual author; distinct from the real author or narrator of a text. Early large language models trained on unfiltered training sets drawn from a variety of discordant sources yielded incoherent personalities, problematic for conversational tasks but proving useful for sampling literature from multiple perspectives. Successes in alignment research in recent years have allowed researchers to impose subjectively consistent personae on language models via instruction tuning and reinforcement learning from human feedback (RLHF), but whether aligned models retain the ability to model an arbitrary virtual author has received little scrutiny. By studying 4,374 stories sampled from three OpenAI language models, we show successive versions of GPT-3 suffer from increasing degrees of "mode collapse" whereby overfitting the model during alignment constrains it from generalizing over authorship: models suffering from mode collapse become unable to assume a multiplicity of perspectives. Our method and results are significant for researchers seeking to employ language models in sociological simulations.
Using Sequences of Life-events to Predict Human Lives
Over the past decade, machine learning has revolutionized computers' ability to analyze text through flexible computational models. Due to their structural similarity to written language, transformer-based architectures have also shown promise as tools to make sense of a range of multi-variate sequences from protein-structures, music, electronic health records to weather-forecasts. We can also represent human lives in a way that shares this structural similarity to language. From one perspective, lives are simply sequences of events: People are born, visit the pediatrician, start school, move to a new location, get married, and so on. Here, we exploit this similarity to adapt innovations from natural language processing to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on arguably the most comprehensive registry data in existence, available for an entire nation of more than six million individuals across decades. Our data include information about life-events related to health, education, occupation, income, address, and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to identify new potential mechanisms that impact life outcomes and associated possibilities for personalized interventions.
Same Author or Just Same Topic? Towards Content-Independent Style Representations
Linguistic style is an integral component of language. Recent advances in the development of style representations have increasingly used training objectives from authorship verification (AV): Do two texts have the same author? The assumption underlying the AV training task (same author approximates same writing style) enables self-supervised and, thus, extensive training. However, a good performance on the AV task does not ensure good "general-purpose" style representations. For example, as the same author might typically write about certain topics, representations trained on AV might also encode content information instead of style alone. We introduce a variation of the AV training task that controls for content using conversation or domain labels. We evaluate whether known style dimensions are represented and preferred over content information through an original variation to the recently proposed STEL framework. We find that representations trained by controlling for conversation are better than representations trained with domain or no content control at representing style independent from content.
DynASyn: Multi-Subject Personalization Enabling Dynamic Action Synthesis
Recent advances in text-to-image diffusion models spurred research on personalization, i.e., a customized image synthesis, of subjects within reference images. Although existing personalization methods are able to alter the subjects' positions or to personalize multiple subjects simultaneously, they often struggle to modify the behaviors of subjects or their dynamic interactions. The difficulty is attributable to overfitting to reference images, which worsens if only a single reference image is available. We propose DynASyn, an effective multi-subject personalization from a single reference image addressing these challenges. DynASyn preserves the subject identity in the personalization process by aligning concept-based priors with subject appearances and actions. This is achieved by regularizing the attention maps between the subject token and images through concept-based priors. In addition, we propose concept-based prompt-and-image augmentation for an enhanced trade-off between identity preservation and action diversity. We adopt an SDE-based editing guided by augmented prompts to generate diverse appearances and actions while maintaining identity consistency in the augmented images. Experiments show that DynASyn is capable of synthesizing highly realistic images of subjects with novel contexts and dynamic interactions with the surroundings, and outperforms baseline methods in both quantitative and qualitative aspects.
Meta-Prod2Vec - Product Embeddings Using Side-Information for Recommendation
We propose Meta-Prod2vec, a novel method to compute item similarities for recommendation that leverages existing item metadata. Such scenarios are frequently encountered in applications such as content recommendation, ad targeting and web search. Our method leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items. Specifically, the item metadata is in- jected into the model as side information to regularize the item embeddings. We show that the new item representa- tions lead to better performance on recommendation tasks on an open music dataset.
SemEval-2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation
Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017).
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
MUSER: A Multi-View Similar Case Retrieval Dataset
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.
PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons
We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research.
MFIM: Megapixel Facial Identity Manipulation
Face swapping is a task that changes a facial identity of a given image to that of another person. In this work, we propose a novel face-swapping framework called Megapixel Facial Identity Manipulation (MFIM). The face-swapping model should achieve two goals. First, it should be able to generate a high-quality image. We argue that a model which is proficient in generating a megapixel image can achieve this goal. However, generating a megapixel image is generally difficult without careful model design. Therefore, our model exploits pretrained StyleGAN in the manner of GAN-inversion to effectively generate a megapixel image. Second, it should be able to effectively transform the identity of a given image. Specifically, it should be able to actively transform ID attributes (e.g., face shape and eyes) of a given image into those of another person, while preserving ID-irrelevant attributes (e.g., pose and expression). To achieve this goal, we exploit 3DMM that can capture various facial attributes. Specifically, we explicitly supervise our model to generate a face-swapped image with the desirable attributes using 3DMM. We show that our model achieves state-of-the-art performance through extensive experiments. Furthermore, we propose a new operation called ID mixing, which creates a new identity by semantically mixing the identities of several people. It allows the user to customize the new identity.
Learning Certified Individually Fair Representations
Fair representation learning provides an effective way of enforcing fairness constraints without compromising utility for downstream users. A desirable family of such fairness constraints, each requiring similar treatment for similar individuals, is known as individual fairness. In this work, we introduce the first method that enables data consumers to obtain certificates of individual fairness for existing and new data points. The key idea is to map similar individuals to close latent representations and leverage this latent proximity to certify individual fairness. That is, our method enables the data producer to learn and certify a representation where for a data point all similar individuals are at ell_infty-distance at most epsilon, thus allowing data consumers to certify individual fairness by proving epsilon-robustness of their classifier. Our experimental evaluation on five real-world datasets and several fairness constraints demonstrates the expressivity and scalability of our approach.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
Identity Decoupling for Multi-Subject Personalization of Text-to-Image Models
Text-to-image diffusion models have shown remarkable success in generating a personalized subject based on a few reference images. However, current methods struggle with handling multiple subjects simultaneously, often resulting in mixed identities with combined attributes from different subjects. In this work, we present MuDI, a novel framework that enables multi-subject personalization by effectively decoupling identities from multiple subjects. Our main idea is to utilize segmented subjects generated by the Segment Anything Model for both training and inference, as a form of data augmentation for training and initialization for the generation process. Our experiments demonstrate that MuDI can produce high-quality personalized images without identity mixing, even for highly similar subjects as shown in Figure 1. In human evaluation, MuDI shows twice as many successes for personalizing multiple subjects without identity mixing over existing baselines and is preferred over 70% compared to the strongest baseline. More results are available at https://mudi-t2i.github.io/.
Learnable PINs: Cross-Modal Embeddings for Person Identity
We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.
Source Code Clone Detection Using Unsupervised Similarity Measures
Assessing similarity in source code has gained significant attention in recent years due to its importance in software engineering tasks such as clone detection and code search and recommendation. This work presents a comparative analysis of unsupervised similarity measures for identifying source code clone detection. The goal is to overview the current state-of-the-art techniques, their strengths, and weaknesses. To do that, we compile the existing unsupervised strategies and evaluate their performance on a benchmark dataset to guide software engineers in selecting appropriate methods for their specific use cases. The source code of this study is available at https://github.com/jorge-martinez-gil/codesim
What Makes Sentences Semantically Related: A Textual Relatedness Dataset and Empirical Study
The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. Additionally, automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity, a subset of relatedness, because of a lack of relatedness datasets. In this paper, we introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated using a comparative annotation framework, resulting in fine-grained scores. We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84. We use the dataset to explore questions on what makes sentences semantically related. We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks. Our dataset, data statement, and annotation questionnaire can be found at: https://doi.org/10.5281/zenodo.7599667
PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved Personalization
Recent advancements in personalized image generation using diffusion models have been noteworthy. However, existing methods suffer from inefficiencies due to the requirement for subject-specific fine-tuning. This computationally intensive process hinders efficient deployment, limiting practical usability. Moreover, these methods often grapple with identity distortion and limited expression diversity. In light of these challenges, we propose PortraitBooth, an innovative approach designed for high efficiency, robust identity preservation, and expression-editable text-to-image generation, without the need for fine-tuning. PortraitBooth leverages subject embeddings from a face recognition model for personalized image generation without fine-tuning. It eliminates computational overhead and mitigates identity distortion. The introduced dynamic identity preservation strategy further ensures close resemblance to the original image identity. Moreover, PortraitBooth incorporates emotion-aware cross-attention control for diverse facial expressions in generated images, supporting text-driven expression editing. Its scalability enables efficient and high-quality image creation, including multi-subject generation. Extensive results demonstrate superior performance over other state-of-the-art methods in both single and multiple image generation scenarios.
SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages
We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
PhotoVerse: Tuning-Free Image Customization with Text-to-Image Diffusion Models
Personalized text-to-image generation has emerged as a powerful and sought-after tool, empowering users to create customized images based on their specific concepts and prompts. However, existing approaches to personalization encounter multiple challenges, including long tuning times, large storage requirements, the necessity for multiple input images per identity, and limitations in preserving identity and editability. To address these obstacles, we present PhotoVerse, an innovative methodology that incorporates a dual-branch conditioning mechanism in both text and image domains, providing effective control over the image generation process. Furthermore, we introduce facial identity loss as a novel component to enhance the preservation of identity during training. Remarkably, our proposed PhotoVerse eliminates the need for test time tuning and relies solely on a single facial photo of the target identity, significantly reducing the resource cost associated with image generation. After a single training phase, our approach enables generating high-quality images within only a few seconds. Moreover, our method can produce diverse images that encompass various scenes and styles. The extensive evaluation demonstrates the superior performance of our approach, which achieves the dual objectives of preserving identity and facilitating editability. Project page: https://photoverse2d.github.io/
Personality Alignment of Large Language Models
Current methods for aligning large language models (LLMs) typically aim to reflect general human values and behaviors, but they often fail to capture the unique characteristics and preferences of individual users. To address this gap, we introduce the concept of Personality Alignment. This approach tailors LLMs' responses and decisions to match the specific preferences of individual users or closely related groups. Inspired by psychometrics, we created the Personality Alignment with Personality Inventories (PAPI) dataset, which includes data from 300,000 real subjects, each providing behavioral preferences based on the Big Five Personality Factors. This dataset allows us to quantitatively evaluate the extent to which LLMs can align with each subject's behavioral patterns. Recognizing the challenges of personality alignments: such as limited personal data, diverse preferences, and scalability requirements: we developed an activation intervention optimization method. This method enhances LLMs' ability to efficiently align with individual behavioral preferences using minimal data and computational resources. Remarkably, our method, PAS, achieves superior performance while requiring only 1/5 of the optimization time compared to DPO, offering practical value for personality alignment. Our work paves the way for future AI systems to make decisions and reason in truly personality ways, enhancing the relevance and meaning of AI interactions for each user and advancing human-centered artificial intelligence.The code has released in https://github.com/zhu-minjun/PAlign.
PuLID: Pure and Lightning ID Customization via Contrastive Alignment
We propose Pure and Lightning ID customization (PuLID), a novel tuning-free ID customization method for text-to-image generation. By incorporating a Lightning T2I branch with a standard diffusion one, PuLID introduces both contrastive alignment loss and accurate ID loss, minimizing disruption to the original model and ensuring high ID fidelity. Experiments show that PuLID achieves superior performance in both ID fidelity and editability. Another attractive property of PuLID is that the image elements (e.g., background, lighting, composition, and style) before and after the ID insertion are kept as consistent as possible. Codes and models will be available at https://github.com/ToTheBeginning/PuLID
RelationBooth: Towards Relation-Aware Customized Object Generation
Customized image generation is crucial for delivering personalized content based on user-provided image prompts, aligning large-scale text-to-image diffusion models with individual needs. However, existing models often overlook the relationships between customized objects in generated images. Instead, this work addresses that gap by focusing on relation-aware customized image generation, which aims to preserve the identities from image prompts while maintaining the predicate relations described in text prompts. Specifically, we introduce RelationBooth, a framework that disentangles identity and relation learning through a well-curated dataset. Our training data consists of relation-specific images, independent object images containing identity information, and text prompts to guide relation generation. Then, we propose two key modules to tackle the two main challenges: generating accurate and natural relations, especially when significant pose adjustments are required, and avoiding object confusion in cases of overlap. First, we introduce a keypoint matching loss that effectively guides the model in adjusting object poses closely tied to their relationships. Second, we incorporate local features from the image prompts to better distinguish between objects, preventing confusion in overlapping cases. Extensive results on three benchmarks demonstrate the superiority of RelationBooth in generating precise relations while preserving object identities across a diverse set of objects and relations. The source code and trained models will be made available to the public.
Evaluating Unsupervised Text Classification: Zero-shot and Similarity-based Approaches
Text classification of unseen classes is a challenging Natural Language Processing task and is mainly attempted using two different types of approaches. Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations. Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents. Although existing studies have already investigated individual approaches to these categories, the experiments in literature do not provide a consistent comparison. This paper addresses this gap by conducting a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes. Different state-of-the-art approaches are benchmarked on four text classification datasets, including a new dataset from the medical domain. Additionally, novel SimCSE and SBERT-based baselines are proposed, as other baselines used in existing work yield weak classification results and are easily outperformed. Finally, the novel similarity-based Lbl2TransformerVec approach is presented, which outperforms previous state-of-the-art approaches in unsupervised text classification. Our experiments show that similarity-based approaches significantly outperform zero-shot approaches in most cases. Additionally, using SimCSE or SBERT embeddings instead of simpler text representations increases similarity-based classification results even further.
Familiarity: Better Evaluation of Zero-Shot Named Entity Recognition by Quantifying Label Shifts in Synthetic Training Data
Zero-shot named entity recognition (NER) is the task of detecting named entities of specific types (such as 'Person' or 'Medicine') without any training examples. Current research increasingly relies on large synthetic datasets, automatically generated to cover tens of thousands of distinct entity types, to train zero-shot NER models. However, in this paper, we find that these synthetic datasets often contain entity types that are semantically highly similar to (or even the same as) those in standard evaluation benchmarks. Because of this overlap, we argue that reported F1 scores for zero-shot NER overestimate the true capabilities of these approaches. Further, we argue that current evaluation setups provide an incomplete picture of zero-shot abilities since they do not quantify the label shift (i.e., the similarity of labels) between training and evaluation datasets. To address these issues, we propose Familiarity, a novel metric that captures both the semantic similarity between entity types in training and evaluation, as well as their frequency in the training data, to provide an estimate of label shift. It allows researchers to contextualize reported zero-shot NER scores when using custom synthetic training datasets. Further, it enables researchers to generate evaluation setups of various transfer difficulties for fine-grained analysis of zero-shot NER.
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.
PALP: Prompt Aligned Personalization of Text-to-Image Models
Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a single prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques.
IDEL: In-Database Entity Linking with Neural Embeddings
We present a novel architecture, In-Database Entity Linking (IDEL), in which we integrate the analytics-optimized RDBMS MonetDB with neural text mining abilities. Our system design abstracts core tasks of most neural entity linking systems for MonetDB. To the best of our knowledge, this is the first defacto implemented system integrating entity-linking in a database. We leverage the ability of MonetDB to support in-database-analytics with user defined functions (UDFs) implemented in Python. These functions call machine learning libraries for neural text mining, such as TensorFlow. The system achieves zero cost for data shipping and transformation by utilizing MonetDB's ability to embed Python processes in the database kernel and exchange data in NumPy arrays. IDEL represents text and relational data in a joint vector space with neural embeddings and can compensate errors with ambiguous entity representations. For detecting matching entities, we propose a novel similarity function based on joint neural embeddings which are learned via minimizing pairwise contrastive ranking loss. This function utilizes a high dimensional index structures for fast retrieval of matching entities. Our first implementation and experiments using the WebNLG corpus show the effectiveness and the potentials of IDEL.
What Looks Good with my Sofa: Multimodal Search Engine for Interior Design
In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public.
MegaPortrait: Revisiting Diffusion Control for High-fidelity Portrait Generation
We propose MegaPortrait. It's an innovative system for creating personalized portrait images in computer vision. It has three modules: Identity Net, Shading Net, and Harmonization Net. Identity Net generates learned identity using a customized model fine-tuned with source images. Shading Net re-renders portraits using extracted representations. Harmonization Net fuses pasted faces and the reference image's body for coherent results. Our approach with off-the-shelf Controlnets is better than state-of-the-art AI portrait products in identity preservation and image fidelity. MegaPortrait has a simple but effective design and we compare it with other methods and products to show its superiority.
Unlearning Personal Data from a Single Image
Machine unlearning aims to erase data from a model as if the latter never saw them during training. While existing approaches unlearn information from complete or partial access to the training data, this access can be limited over time due to privacy regulations. Currently, no setting or benchmark exists to probe the effectiveness of unlearning methods in such scenarios. To fill this gap, we propose a novel task we call One-Shot Unlearning of Personal Identities (1-SHUI) that evaluates unlearning models when the training data is not available. We focus on unlearning identity data, which is specifically relevant due to current regulations requiring personal data deletion after training. To cope with data absence, we expect users to provide a portraiting picture to aid unlearning. We design requests on CelebA, CelebA-HQ, and MUFAC with different unlearning set sizes to evaluate applicable methods in 1-SHUI. Moreover, we propose MetaUnlearn, an effective method that meta-learns to forget identities from a single image. Our findings indicate that existing approaches struggle when data availability is limited, especially when there is a dissimilarity between the provided samples and the training data. Source code available at https://github.com/tdemin16/one-shui.
"All of Me": Mining Users' Attributes from their Public Spotify Playlists
In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. These publicly accessible playlists transcend the boundaries of mere musical preferences: they serve as sources of rich insights into users' attributes and identities. For example, the musical preferences of elderly individuals may lean more towards Frank Sinatra, while Billie Eilish remains a favored choice among teenagers. These playlists thus become windows into the diverse and evolving facets of one's musical identity. In this work, we investigate the relationship between Spotify users' attributes and their public playlists. In particular, we focus on identifying recurring musical characteristics associated with users' individual attributes, such as demographics, habits, or personality traits. To this end, we conducted an online survey involving 739 Spotify users, yielding a dataset of 10,286 publicly shared playlists encompassing over 200,000 unique songs and 55,000 artists. Through extensive statistical analyses, we first assess a deep connection between a user's Spotify playlists and their real-life attributes. For instance, we found individuals high in openness often create playlists featuring a diverse array of artists, while female users prefer Pop and K-pop music genres. Building upon these observed associations, we create accurate predictive models for users' attributes, presenting a novel DeepSet application that outperforms baselines in most of these users' attributes.
LeanVec: Search your vectors faster by making them fit
Modern deep learning models have the ability to generate high-dimensional vectors whose similarity reflects semantic resemblance. Thus, similarity search, i.e., the operation of retrieving those vectors in a large collection that are similar to a given query, has become a critical component of a wide range of applications that demand highly accurate and timely answers. In this setting, the high vector dimensionality puts similarity search systems under compute and memory pressure, leading to subpar performance. Additionally, cross-modal retrieval tasks have become increasingly common, e.g., where a user inputs a text query to find the most relevant images for that query. However, these queries often have different distributions than the database embeddings, making it challenging to achieve high accuracy. In this work, we present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors while maintaining accuracy. We present LeanVec variants for in-distribution (ID) and out-of-distribution (OOD) queries. LeanVec-ID yields accuracies on par with those from recently introduced deep learning alternatives whose computational overhead precludes their usage in practice. LeanVec-OOD uses a novel technique for dimensionality reduction that considers the query and database distributions to simultaneously boost the accuracy and the performance of the framework even further (even presenting competitive results when the query and database distributions match). All in all, our extensive and varied experimental results show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time over the state of the art.
EMBERSim: A Large-Scale Databank for Boosting Similarity Search in Malware Analysis
In recent years there has been a shift from heuristics-based malware detection towards machine learning, which proves to be more robust in the current heavily adversarial threat landscape. While we acknowledge machine learning to be better equipped to mine for patterns in the increasingly high amounts of similar-looking files, we also note a remarkable scarcity of the data available for similarity-targeted research. Moreover, we observe that the focus in the few related works falls on quantifying similarity in malware, often overlooking the clean data. This one-sided quantification is especially dangerous in the context of detection bypass. We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER - one of the largest malware classification data sets. We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space. Our contribution is threefold: (1) we publish EMBERSim, an augmented version of EMBER, that includes similarity-informed tags; (2) we enrich EMBERSim with automatically determined malware class tags using the open-source tool AVClass on VirusTotal data and (3) we describe and share the implementation for our class scoring technique and leaf similarity method.
Characterizing, Detecting, and Predicting Online Ban Evasion
Moderators and automated methods enforce bans on malicious users who engage in disruptive behavior. However, malicious users can easily create a new account to evade such bans. Previous research has focused on other forms of online deception, like the simultaneous operation of multiple accounts by the same entities (sockpuppetry), impersonation of other individuals, and studying the effects of de-platforming individuals and communities. Here we conduct the first data-driven study of ban evasion, i.e., the act of circumventing bans on an online platform, leading to temporally disjoint operation of accounts by the same user. We curate a novel dataset of 8,551 ban evasion pairs (parent, child) identified on Wikipedia and contrast their behavior with benign users and non-evading malicious users. We find that evasion child accounts demonstrate similarities with respect to their banned parent accounts on several behavioral axes - from similarity in usernames and edited pages to similarity in content added to the platform and its psycholinguistic attributes. We reveal key behavioral attributes of accounts that are likely to evade bans. Based on the insights from the analyses, we train logistic regression classifiers to detect and predict ban evasion at three different points in the ban evasion lifecycle. Results demonstrate the effectiveness of our methods in predicting future evaders (AUC = 0.78), early detection of ban evasion (AUC = 0.85), and matching child accounts with parent accounts (MRR = 0.97). Our work can aid moderators by reducing their workload and identifying evasion pairs faster and more efficiently than current manual and heuristic-based approaches. Dataset is available https://github.com/srijankr/ban_evasion{here}.
InstantFamily: Masked Attention for Zero-shot Multi-ID Image Generation
In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.
LogoSticker: Inserting Logos into Diffusion Models for Customized Generation
Recent advances in text-to-image model customization have underscored the importance of integrating new concepts with a few examples. Yet, these progresses are largely confined to widely recognized subjects, which can be learned with relative ease through models' adequate shared prior knowledge. In contrast, logos, characterized by unique patterns and textual elements, are hard to establish shared knowledge within diffusion models, thus presenting a unique challenge. To bridge this gap, we introduce the task of logo insertion. Our goal is to insert logo identities into diffusion models and enable their seamless synthesis in varied contexts. We present a novel two-phase pipeline LogoSticker to tackle this task. First, we propose the actor-critic relation pre-training algorithm, which addresses the nontrivial gaps in models' understanding of the potential spatial positioning of logos and interactions with other objects. Second, we propose a decoupled identity learning algorithm, which enables precise localization and identity extraction of logos. LogoSticker can generate logos accurately and harmoniously in diverse contexts. We comprehensively validate the effectiveness of LogoSticker over customization methods and large models such as DALLE~3. https://mingkangz.github.io/logosticker{Project page}.
SESA: Supervised Explicit Semantic Analysis
In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.
Attributing Image Generative Models using Latent Fingerprints
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
MARS: Matching Attribute-aware Representations for Text-based Sequential Recommendation
Sequential recommendation aims to predict the next item a user is likely to prefer based on their sequential interaction history. Recently, text-based sequential recommendation has emerged as a promising paradigm that uses pre-trained language models to exploit textual item features to enhance performance and facilitate knowledge transfer to unseen datasets. However, existing text-based recommender models still struggle with two key challenges: (i) representing users and items with multiple attributes, and (ii) matching items with complex user interests. To address these challenges, we propose a novel model, Matching Attribute-aware Representations for Text-based Sequential Recommendation (MARS). MARS extracts detailed user and item representations through attribute-aware text encoding, capturing diverse user intents with multiple attribute-aware representations. It then computes user-item scores via attribute-wise interaction matching, effectively capturing attribute-level user preferences. Our extensive experiments demonstrate that MARS significantly outperforms existing sequential models, achieving improvements of up to 24.43% and 29.26% in Recall@10 and NDCG@10 across five benchmark datasets. Code is available at https://github.com/junieberry/MARS
FlexIP: Dynamic Control of Preservation and Personality for Customized Image Generation
With the rapid advancement of 2D generative models, preserving subject identity while enabling diverse editing has emerged as a critical research focus. Existing methods typically face inherent trade-offs between identity preservation and personalized manipulation. We introduce FlexIP, a novel framework that decouples these objectives through two dedicated components: a Personalization Adapter for stylistic manipulation and a Preservation Adapter for identity maintenance. By explicitly injecting both control mechanisms into the generative model, our framework enables flexible parameterized control during inference through dynamic tuning of the weight adapter. Experimental results demonstrate that our approach breaks through the performance limitations of conventional methods, achieving superior identity preservation while supporting more diverse personalized generation capabilities (Project Page: https://flexip-tech.github.io/flexip/).
MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream
A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover's Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. Code, data, and models available at: https://github.com/allenai/aspire
Willkommens-Merkel, Chaos-Johnson, and Tore-Klose: Modeling the Evaluative Meaning of German Personal Name Compounds
We present a comprehensive computational study of the under-investigated phenomenon of personal name compounds (PNCs) in German such as Willkommens-Merkel ('Welcome-Merkel'). Prevalent in news, social media, and political discourse, PNCs are hypothesized to exhibit an evaluative function that is reflected in a more positive or negative perception as compared to the respective personal full name (such as Angela Merkel). We model 321 PNCs and their corresponding full names at discourse level, and show that PNCs bear an evaluative nature that can be captured through a variety of computational methods. Specifically, we assess through valence information whether a PNC is more positively or negatively evaluative than the person's name, by applying and comparing two approaches using (i) valence norms and (ii) pretrained language models (PLMs). We further enrich our data with personal, domain-specific, and extra-linguistic information and perform a range of regression analyses revealing that factors including compound and modifier valence, domain, and political party membership influence how a PNC is evaluated.
Faceless Person Recognition; Privacy Implications in Social Media
As we shift more of our lives into the virtual domain, the volume of data shared on the web keeps increasing and presents a threat to our privacy. This works contributes to the understanding of privacy implications of such data sharing by analysing how well people are recognisable in social media data. To facilitate a systematic study we define a number of scenarios considering factors such as how many heads of a person are tagged and if those heads are obfuscated or not. We propose a robust person recognition system that can handle large variations in pose and clothing, and can be trained with few training samples. Our results indicate that a handful of images is enough to threaten users' privacy, even in the presence of obfuscation. We show detailed experimental results, and discuss their implications.
Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch
Person re-identification (re-ID), which aims to re-identify people across different camera views, has been significantly advanced by deep learning in recent years, particularly with convolutional neural networks (CNNs). In this paper, we present Torchreid, a software library built on PyTorch that allows fast development and end-to-end training and evaluation of deep re-ID models. As a general-purpose framework for person re-ID research, Torchreid provides (1) unified data loaders that support 15 commonly used re-ID benchmark datasets covering both image and video domains, (2) streamlined pipelines for quick development and benchmarking of deep re-ID models, and (3) implementations of the latest re-ID CNN architectures along with their pre-trained models to facilitate reproducibility as well as future research. With a high-level modularity in its design, Torchreid offers a great flexibility to allow easy extension to new datasets, CNN models and loss functions.
ID-Animator: Zero-Shot Identity-Preserving Human Video Generation
Generating high fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case finetuning or usually missing the identity details in video generation process. In this study, we present ID-Animator, a zero-shot human-video generation approach that can perform personalized video generation given single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline, which incorporates decoupled human attribute and action captioning technique from a constructed facial image pool. Based on this pipeline, a random face reference training method is further devised to precisely capture the ID-relevant embeddings from reference images, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints will be released at https://github.com/ID-Animator/ID-Animator.
Room to Grow: Understanding Personal Characteristics Behind Self Improvement Using Social Media
Many people aim for change, but not everyone succeeds. While there are a number of social psychology theories that propose motivation-related characteristics of those who persist with change, few computational studies have explored the motivational stage of personal change. In this paper, we investigate a new dataset consisting of the writings of people who manifest intention to change, some of whom persist while others do not. Using a variety of linguistic analysis techniques, we first examine the writing patterns that distinguish the two groups of people. Persistent people tend to reference more topics related to long-term self-improvement and use a more complicated writing style. Drawing on these consistent differences, we build a classifier that can reliably identify the people more likely to persist, based on their language. Our experiments provide new insights into the motivation-related behavior of people who persist with their intention to change.
AnyMaker: Zero-shot General Object Customization via Decoupled Dual-Level ID Injection
Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.
Biomedical Concept Relatedness -- A large EHR-based benchmark
A promising application of AI to healthcare is the retrieval of information from electronic health records (EHRs), e.g. to aid clinicians in finding relevant information for a consultation or to recruit suitable patients for a study. This requires search capabilities far beyond simple string matching, including the retrieval of concepts (diagnoses, symptoms, medications, etc.) related to the one in question. The suitability of AI methods for such applications is tested by predicting the relatedness of concepts with known relatedness scores. However, all existing biomedical concept relatedness datasets are notoriously small and consist of hand-picked concept pairs. We open-source a novel concept relatedness benchmark overcoming these issues: it is six times larger than existing datasets and concept pairs are chosen based on co-occurrence in EHRs, ensuring their relevance for the application of interest. We present an in-depth analysis of our new dataset and compare it to existing ones, highlighting that it is not only larger but also complements existing datasets in terms of the types of concepts included. Initial experiments with state-of-the-art embedding methods show that our dataset is a challenging new benchmark for testing concept relatedness models.
Reinforced Disentanglement for Face Swapping without Skip Connection
The SOTA face swap models still suffer the problem of either target identity (i.e., shape) being leaked or the target non-identity attributes (i.e., background, hair) failing to be fully preserved in the final results. We show that this insufficient disentanglement is caused by two flawed designs that were commonly adopted in prior models: (1) counting on only one compressed encoder to represent both the semantic-level non-identity facial attributes(i.e., pose) and the pixel-level non-facial region details, which is contradictory to satisfy at the same time; (2) highly relying on long skip-connections between the encoder and the final generator, leaking a certain amount of target face identity into the result. To fix them, we introduce a new face swap framework called 'WSC-swap' that gets rid of skip connections and uses two target encoders to respectively capture the pixel-level non-facial region attributes and the semantic non-identity attributes in the face region. To further reinforce the disentanglement learning for the target encoder, we employ both identity removal loss via adversarial training (i.e., GAN) and the non-identity preservation loss via prior 3DMM models like [11]. Extensive experiments on both FaceForensics++ and CelebA-HQ show that our results significantly outperform previous works on a rich set of metrics, including one novel metric for measuring identity consistency that was completely neglected before.
A Benchmark and Asymmetrical-Similarity Learning for Practical Image Copy Detection
Image copy detection (ICD) aims to determine whether a query image is an edited copy of any image from a reference set. Currently, there are very limited public benchmarks for ICD, while all overlook a critical challenge in real-world applications, i.e., the distraction from hard negative queries. Specifically, some queries are not edited copies but are inherently similar to some reference images. These hard negative queries are easily false recognized as edited copies, significantly compromising the ICD accuracy. This observation motivates us to build the first ICD benchmark featuring this characteristic. Based on existing ICD datasets, this paper constructs a new dataset by additionally adding 100, 000 and 24, 252 hard negative pairs into the training and test set, respectively. Moreover, this paper further reveals a unique difficulty for solving the hard negative problem in ICD, i.e., there is a fundamental conflict between current metric learning and ICD. This conflict is: the metric learning adopts symmetric distance while the edited copy is an asymmetric (unidirectional) process, e.g., a partial crop is close to its holistic reference image and is an edited copy, while the latter cannot be the edited copy of the former (in spite the distance is equally small). This insight results in an Asymmetrical-Similarity Learning (ASL) method, which allows the similarity in two directions (the query <-> the reference image) to be different from each other. Experimental results show that ASL outperforms state-of-the-art methods by a clear margin, confirming that solving the symmetric-asymmetric conflict is critical for ICD. The NDEC dataset and code are available at https://github.com/WangWenhao0716/ASL.
Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges
Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io
DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation
With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.
Implicit Personalization in Language Models: A Systematic Study
Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.
Face Anonymization Made Simple
Current face anonymization techniques often depend on identity loss calculated by face recognition models, which can be inaccurate and unreliable. Additionally, many methods require supplementary data such as facial landmarks and masks to guide the synthesis process. In contrast, our approach uses diffusion models with only a reconstruction loss, eliminating the need for facial landmarks or masks while still producing images with intricate, fine-grained details. We validated our results on two public benchmarks through both quantitative and qualitative evaluations. Our model achieves state-of-the-art performance in three key areas: identity anonymization, facial attribute preservation, and image quality. Beyond its primary function of anonymization, our model can also perform face swapping tasks by incorporating an additional facial image as input, demonstrating its versatility and potential for diverse applications. Our code and models are available at https://github.com/hanweikung/face_anon_simple .
Layout-and-Retouch: A Dual-stage Framework for Improving Diversity in Personalized Image Generation
Personalized text-to-image (P-T2I) generation aims to create new, text-guided images featuring the personalized subject with a few reference images. However, balancing the trade-off relationship between prompt fidelity and identity preservation remains a critical challenge. To address the issue, we propose a novel P-T2I method called Layout-and-Retouch, consisting of two stages: 1) layout generation and 2) retouch. In the first stage, our step-blended inference utilizes the inherent sample diversity of vanilla T2I models to produce diversified layout images, while also enhancing prompt fidelity. In the second stage, multi-source attention swapping integrates the context image from the first stage with the reference image, leveraging the structure from the context image and extracting visual features from the reference image. This achieves high prompt fidelity while preserving identity characteristics. Through our extensive experiments, we demonstrate that our method generates a wide variety of images with diverse layouts while maintaining the unique identity features of the personalized objects, even with challenging text prompts. This versatility highlights the potential of our framework to handle complex conditions, significantly enhancing the diversity and applicability of personalized image synthesis.
FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
Classifying Dyads for Militarized Conflict Analysis
Understanding the origins of militarized conflict is a complex, yet important undertaking. Existing research seeks to build this understanding by considering bi-lateral relationships between entity pairs (dyadic causes) and multi-lateral relationships among multiple entities (systemic causes). The aim of this work is to compare these two causes in terms of how they correlate with conflict between two entities. We do this by devising a set of textual and graph-based features which represent each of the causes. The features are extracted from Wikipedia and modeled as a large graph. Nodes in this graph represent entities connected by labeled edges representing ally or enemy-relationships. This allows casting the problem as an edge classification task, which we term dyad classification. We propose and evaluate classifiers to determine if a particular pair of entities are allies or enemies. Our results suggest that our systemic features might be slightly better correlates of conflict. Further, we find that Wikipedia articles of allies are semantically more similar than enemies.
CriSp: Leveraging Tread Depth Maps for Enhanced Crime-Scene Shoeprint Matching
Shoeprints are a common type of evidence found at crime scenes and are used regularly in forensic investigations. However, existing methods cannot effectively employ deep learning techniques to match noisy and occluded crime-scene shoeprints to a shoe database due to a lack of training data. Moreover, all existing methods match crime-scene shoeprints to clean reference prints, yet our analysis shows matching to more informative tread depth maps yields better retrieval results. The matching task is further complicated by the necessity to identify similarities only in corresponding regions (heels, toes, etc) of prints and shoe treads. To overcome these challenges, we leverage shoe tread images from online retailers and utilize an off-the-shelf predictor to estimate depth maps and clean prints. Our method, named CriSp, matches crime-scene shoeprints to tread depth maps by training on this data. CriSp incorporates data augmentation to simulate crime-scene shoeprints, an encoder to learn spatially-aware features, and a masking module to ensure only visible regions of crime-scene prints affect retrieval results. To validate our approach, we introduce two validation sets by reprocessing existing datasets of crime-scene shoeprints and establish a benchmarking protocol for comparison. On this benchmark, CriSp significantly outperforms state-of-the-art methods in both automated shoeprint matching and image retrieval tailored to this task.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
Contextualizing the Limits of Model & Evaluation Dataset Curation on Semantic Similarity Classification Tasks
This paper demonstrates how the limitations of pre-trained models and open evaluation datasets factor into assessing the performance of binary semantic similarity classification tasks. As (1) end-user-facing documentation around the curation of these datasets and pre-trained model training regimes is often not easily accessible and (2) given the lower friction and higher demand to quickly deploy such systems in real-world contexts, our study reinforces prior work showing performance disparities across datasets, embedding techniques and distance metrics, while highlighting the importance of understanding how data is collected, curated and analyzed in semantic similarity classification.
Results and findings of the 2021 Image Similarity Challenge
The 2021 Image Similarity Challenge introduced a dataset to serve as a new benchmark to evaluate recent image copy detection methods. There were 200 participants to the competition. This paper presents a quantitative and qualitative analysis of the top submissions. It appears that the most difficult image transformations involve either severe image crops or hiding into unrelated images, combined with local pixel perturbations. The key algorithmic elements in the winning submissions are: training on strong augmentations, self-supervised learning, score normalization, explicit overlay detection, and global descriptor matching followed by pairwise image comparison.
D^2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection
Image copy detection is of great importance in real-life social media. In this paper, a data-driven and local-verification (D^2LV) approach is proposed to compete for Image Similarity Challenge: Matching Track at NeurIPS'21. In D^2LV, unsupervised pre-training substitutes the commonly-used supervised one. When training, we design a set of basic and six advanced transformations, and a simple but effective baseline learns robust representation. During testing, a global-local and local-global matching strategy is proposed. The strategy performs local-verification between reference and query images. Experiments demonstrate that the proposed method is effective. The proposed approach ranks first out of 1,103 participants on the Facebook AI Image Similarity Challenge: Matching Track. The code and trained models are available at https://github.com/WangWenhao0716/ISC-Track1-Submission.
Analytical Derivation and Comparison of Alarm Similarity Measures
An industrial process includes many devices, variables, and sub-processes that are physically or electronically interconnected. These interconnections imply some level of correlation between different process variables. Since most of the alarms in a process plant are defined on process variables, alarms are also correlated. However, this can be a nuisance to operators, for one fault might trigger a, sometimes large, number of alarms. So, it is essential to find and correct correlated alarms. In this paper, we study different methods and techniques proposed to measure correlation or similarity between alarms. The similarity indices are first analytically calculated and then studied and compared. The results are also validated using Monte-Carlo simulation.
Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements
Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.
Shift-tolerant Perceptual Similarity Metric
Existing perceptual similarity metrics assume an image and its reference are well aligned. As a result, these metrics are often sensitive to a small alignment error that is imperceptible to the human eyes. This paper studies the effect of small misalignment, specifically a small shift between the input and reference image, on existing metrics, and accordingly develops a shift-tolerant similarity metric. This paper builds upon LPIPS, a widely used learned perceptual similarity metric, and explores architectural design considerations to make it robust against imperceptible misalignment. Specifically, we study a wide spectrum of neural network elements, such as anti-aliasing filtering, pooling, striding, padding, and skip connection, and discuss their roles in making a robust metric. Based on our studies, we develop a new deep neural network-based perceptual similarity metric. Our experiments show that our metric is tolerant to imperceptible shifts while being consistent with the human similarity judgment.
Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image Personalization
Diffusion-based text-to-image personalization have achieved great success in generating subjects specified by users among various contexts. Even though, existing finetuning-based methods still suffer from model overfitting, which greatly harms the generative diversity, especially when given subject images are few. To this end, we propose Pick-and-Draw, a training-free semantic guidance approach to boost identity consistency and generative diversity for personalization methods. Our approach consists of two components: appearance picking guidance and layout drawing guidance. As for the former, we construct an appearance palette with visual features from the reference image, where we pick local patterns for generating the specified subject with consistent identity. As for layout drawing, we outline the subject's contour by referring to a generative template from the vanilla diffusion model, and inherit the strong image prior to synthesize diverse contexts according to different text conditions. The proposed approach can be applied to any personalized diffusion models and requires as few as a single reference image. Qualitative and quantitative experiments show that Pick-and-Draw consistently improves identity consistency and generative diversity, pushing the trade-off between subject fidelity and image-text fidelity to a new Pareto frontier.
kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval
Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.
LipSim: A Provably Robust Perceptual Similarity Metric
Recent years have seen growing interest in developing and applying perceptual similarity metrics. Research has shown the superiority of perceptual metrics over pixel-wise metrics in aligning with human perception and serving as a proxy for the human visual system. On the other hand, as perceptual metrics rely on neural networks, there is a growing concern regarding their resilience, given the established vulnerability of neural networks to adversarial attacks. It is indeed logical to infer that perceptual metrics may inherit both the strengths and shortcomings of neural networks. In this work, we demonstrate the vulnerability of state-of-the-art perceptual similarity metrics based on an ensemble of ViT-based feature extractors to adversarial attacks. We then propose a framework to train a robust perceptual similarity metric called LipSim (Lipschitz Similarity Metric) with provable guarantees. By leveraging 1-Lipschitz neural networks as the backbone, LipSim provides guarded areas around each data point and certificates for all perturbations within an ell_2 ball. Finally, a comprehensive set of experiments shows the performance of LipSim in terms of natural and certified scores and on the image retrieval application. The code is available at https://github.com/SaraGhazanfari/LipSim.
SeeGULL: A Stereotype Benchmark with Broad Geo-Cultural Coverage Leveraging Generative Models
Stereotype benchmark datasets are crucial to detect and mitigate social stereotypes about groups of people in NLP models. However, existing datasets are limited in size and coverage, and are largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies gain hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, built by utilizing generative capabilities of large language models such as PaLM, and GPT-3, and leveraging a globally diverse rater pool to validate the prevalence of those stereotypes in society. SeeGULL is in English, and contains stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents, as well as state-level identities within the US and India. We also include fine-grained offensiveness scores for different stereotypes and demonstrate their global disparities. Furthermore, we include comparative annotations about the same groups by annotators living in the region vs. those that are based in North America, and demonstrate that within-region stereotypes about groups differ from those prevalent in North America. CONTENT WARNING: This paper contains stereotype examples that may be offensive.
Understanding SSIM
The use of the structural similarity index (SSIM) is widespread. For almost two decades, it has played a major role in image quality assessment in many different research disciplines. Clearly, its merits are indisputable in the research community. However, little deep scrutiny of this index has been performed. Contrary to popular belief, there are some interesting properties of SSIM that merit such scrutiny. In this paper, we analyze the mathematical factors of SSIM and show that it can generate results, in both synthetic and realistic use cases, that are unexpected, sometimes undefined, and nonintuitive. As a consequence, assessing image quality based on SSIM can lead to incorrect conclusions and using SSIM as a loss function for deep learning can guide neural network training in the wrong direction.
Statistical Indistinguishability of Learning Algorithms
When two different parties use the same learning rule on their own data, how can we test whether the distributions of the two outcomes are similar? In this paper, we study the similarity of outcomes of learning rules through the lens of the Total Variation (TV) distance of distributions. We say that a learning rule is TV indistinguishable if the expected TV distance between the posterior distributions of its outputs, executed on two training data sets drawn independently from the same distribution, is small. We first investigate the learnability of hypothesis classes using TV indistinguishable learners. Our main results are information-theoretic equivalences between TV indistinguishability and existing algorithmic stability notions such as replicability and approximate differential privacy. Then, we provide statistical amplification and boosting algorithms for TV indistinguishable learners.
PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation
Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Semantic Answer Similarity for Evaluating Question Answering Models
The evaluation of question answering models compares ground-truth annotations with model predictions. However, as of today, this comparison is mostly lexical-based and therefore misses out on answers that have no lexical overlap but are still semantically similar, thus treating correct answers as false. This underestimation of the true performance of models hinders user acceptance in applications and complicates a fair comparison of different models. Therefore, there is a need for an evaluation metric that is based on semantics instead of pure string similarity. In this short paper, we present SAS, a cross-encoder-based metric for the estimation of semantic answer similarity, and compare it to seven existing metrics. To this end, we create an English and a German three-way annotated evaluation dataset containing pairs of answers along with human judgment of their semantic similarity, which we release along with an implementation of the SAS metric and the experiments. We find that semantic similarity metrics based on recent transformer models correlate much better with human judgment than traditional lexical similarity metrics on our two newly created datasets and one dataset from related work.
Foundations of Vector Retrieval
Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
AI-Based Copyright Detection Of An Image In a Video Using Degree Of Similarity And Image Hashing
The expanse of information available over the internet makes it difficult to identify whether a specific work is a replica or a duplication of a protected work, especially if we talk about visual representations. Strategies are planned to identify the utilization of the copyrighted image in a report. Still, we want to resolve the issue of involving a copyrighted image in a video and a calculation that could recognize the degree of similarity of the copyrighted picture utilized in the video, even for the pieces of the video that are not featured a lot and in the end perform characterization errands on those edges. Machine learning (ML) and artificial intelligence (AI) are vital to address this problem. Numerous associations have been creating different calculations to screen the identification of copyrighted work. This work means concentrating on those calculations, recognizing designs inside the information, and fabricating a more reasonable model for copyrighted image classification and detection. We have used different algorithms like- Image Processing, Convolutional Neural Networks (CNN), Image hashing, etc. Keywords- Copyright, Artificial Intelligence(AI), Copyrighted Image, Convolutional Neural Network(CNN), Image processing, Degree of similarity, Image Hashing.
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.