new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

Multi-Track Timeline Control for Text-Driven 3D Human Motion Generation

Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at https://mathis.petrovich.fr/stmc.

  • 7 authors
·
Jan 16, 2024

Multi-Track MusicLDM: Towards Versatile Music Generation with Latent Diffusion Model

Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.

  • 5 authors
·
Sep 4, 2024

JEN-1 Composer: A Unified Framework for High-Fidelity Multi-Track Music Generation

With rapid advances in generative artificial intelligence, the text-to-music synthesis task has emerged as a promising direction for music generation from scratch. However, finer-grained control over multi-track generation remains an open challenge. Existing models exhibit strong raw generation capability but lack the flexibility to compose separate tracks and combine them in a controllable manner, differing from typical workflows of human composers. To address this issue, we propose JEN-1 Composer, a unified framework to efficiently model marginal, conditional, and joint distributions over multi-track music via a single model. JEN-1 Composer framework exhibits the capacity to seamlessly incorporate any diffusion-based music generation system, e.g. Jen-1, enhancing its capacity for versatile multi-track music generation. We introduce a curriculum training strategy aimed at incrementally instructing the model in the transition from single-track generation to the flexible generation of multi-track combinations. During the inference, users have the ability to iteratively produce and choose music tracks that meet their preferences, subsequently creating an entire musical composition incrementally following the proposed Human-AI co-composition workflow. Quantitative and qualitative assessments demonstrate state-of-the-art performance in controllable and high-fidelity multi-track music synthesis. The proposed JEN-1 Composer represents a significant advance toward interactive AI-facilitated music creation and composition. Demos will be available at https://jenmusic.ai/audio-demos.

  • 4 authors
·
Oct 29, 2023

Antagonising explanation and revealing bias directly through sequencing and multimodal inference

Deep generative models produce data according to a learned representation, e.g. diffusion models, through a process of approximation computing possible samples. Approximation can be understood as reconstruction and the large datasets used to train models as sets of records in which we represent the physical world with some data structure (photographs, audio recordings, manuscripts). During the process of reconstruction, e.g., image frames develop each timestep towards a textual input description. While moving forward in time, frame sets are shaped according to learned bias and their production, we argue here, can be considered as going back in time; not by inspiration on the backward diffusion process but acknowledging culture is specifically marked in the records. Futures of generative modelling, namely in film and audiovisual arts, can benefit by dealing with diffusion systems as a process to compute the future by inevitably being tied to the past, if acknowledging the records as to capture fields of view at a specific time, and to correlate with our own finite memory ideals. Models generating new data distributions can target video production as signal processors and by developing sequences through timelines we ourselves also go back to decade-old algorithmic and multi-track methodologies revealing the actual predictive failure of contemporary approaches to synthesis in moving image, both as relevant to composition and not explanatory.

  • 3 authors
·
Aug 25, 2023

SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes

Multi-object tracking in sports scenes plays a critical role in gathering players statistics, supporting further analysis, such as automatic tactical analysis. Yet existing MOT benchmarks cast little attention on the domain, limiting its development. In this work, we present a new large-scale multi-object tracking dataset in diverse sports scenes, coined as SportsMOT, where all players on the court are supposed to be tracked. It consists of 240 video sequences, over 150K frames (almost 15\times MOT17) and over 1.6M bounding boxes (3\times MOT17) collected from 3 sports categories, including basketball, volleyball and football. Our dataset is characterized with two key properties: 1) fast and variable-speed motion and 2) similar yet distinguishable appearance. We expect SportsMOT to encourage the MOT trackers to promote in both motion-based association and appearance-based association. We benchmark several state-of-the-art trackers and reveal the key challenge of SportsMOT lies in object association. To alleviate the issue, we further propose a new multi-object tracking framework, termed as MixSort, introducing a MixFormer-like structure as an auxiliary association model to prevailing tracking-by-detection trackers. By integrating the customized appearance-based association with the original motion-based association, MixSort achieves state-of-the-art performance on SportsMOT and MOT17. Based on MixSort, we give an in-depth analysis and provide some profound insights into SportsMOT. The dataset and code will be available at https://deeperaction.github.io/datasets/sportsmot.html.

  • 6 authors
·
Apr 11, 2023

HopTrack: A Real-time Multi-Object Tracking System for Embedded Devices

Multi-Object Tracking (MOT) poses significant challenges in computer vision. Despite its wide application in robotics, autonomous driving, and smart manufacturing, there is limited literature addressing the specific challenges of running MOT on embedded devices. State-of-the-art MOT trackers designed for high-end GPUs often experience low processing rates (<11fps) when deployed on embedded devices. Existing MOT frameworks for embedded devices proposed strategies such as fusing the detector model with the feature embedding model to reduce inference latency or combining different trackers to improve tracking accuracy, but tend to compromise one for the other. This paper introduces HopTrack, a real-time multi-object tracking system tailored for embedded devices. Our system employs a novel discretized static and dynamic matching approach along with an innovative content-aware dynamic sampling technique to enhance tracking accuracy while meeting the real-time requirement. Compared with the best high-end GPU modified baseline Byte (Embed) and the best existing baseline on embedded devices MobileNet-JDE, HopTrack achieves a processing speed of up to 39.29 fps on NVIDIA AGX Xavier with a multi-object tracking accuracy (MOTA) of up to 63.12% on the MOT16 benchmark, outperforming both counterparts by 2.15% and 4.82%, respectively. Additionally, the accuracy improvement is coupled with the reduction in energy consumption (20.8%), power (5%), and memory usage (8%), which are crucial resources on embedded devices. HopTrack is also detector agnostic allowing the flexibility of plug-and-play.

  • 6 authors
·
Nov 1, 2024

Multi-Granularity Language-Guided Training for Multi-Object Tracking

Most existing multi-object tracking methods typically learn visual tracking features via maximizing dis-similarities of different instances and minimizing similarities of the same instance. While such a feature learning scheme achieves promising performance, learning discriminative features solely based on visual information is challenging especially in case of environmental interference such as occlusion, blur and domain variance. In this work, we argue that multi-modal language-driven features provide complementary information to classical visual features, thereby aiding in improving the robustness to such environmental interference. To this end, we propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity (scene-and instance-level) and combines it with standard visual features to obtain discriminative representations. To develop LG-MOT, we annotate existing MOT datasets with scene-and instance-level language descriptions. We then encode both instance-and scene-level language information into high-dimensional embeddings, which are utilized to guide the visual features during training. At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions. Extensive experiments on three benchmarks, MOT17, DanceTrack and SportsMOT, reveal the merits of the proposed contributions leading to state-of-the-art performance. On the DanceTrack test set, our LG-MOT achieves an absolute gain of 2.2\% in terms of target object association (IDF1 score), compared to the baseline using only visual features. Further, our LG-MOT exhibits strong cross-domain generalizability. The dataset and code will be available at https://github.com/WesLee88524/LG-MOT.

  • 7 authors
·
Jun 7, 2024

MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark

Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras. This task has practical applications in various fields, such as visual surveillance, crowd behavior analysis, and anomaly detection. However, due to the difficulty and cost of collecting and labeling data, existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting, which limits their ability to model real-world dynamics and generalize to diverse camera configurations. To address this issue, we present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments - campus and factory - across various time, weather, and season conditions. This dataset provides a challenging test-bed for studying multi-camera tracking under diverse real-world complexities and includes an additional input modality of spatially aligned and temporally synchronized RGB and thermal cameras, which enhances the accuracy of multi-camera tracking. MTMMC is a super-set of existing datasets, benefiting independent fields such as person detection, re-identification, and multiple object tracking. We provide baselines and new learning setups on this dataset and set the reference scores for future studies. The datasets, models, and test server will be made publicly available.

  • 5 authors
·
Mar 29, 2024

ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and Spatio-Temporal Affinities for 3D Multi-Object Tracking

3D multi-object tracking (MOT) is essential for an autonomous mobile agent to safely navigate a scene. In order to maximize the perception capabilities of the autonomous agent, we aim to develop a 3D MOT framework that fuses camera and LiDAR sensor information. Building on our prior LiDAR-only work, ShaSTA, which models shape and spatio-temporal affinities for 3D MOT, we propose a novel camera-LiDAR fusion approach for learning affinities. At its core, this work proposes a fusion technique that generates a rich sensory signal incorporating information about depth and distant objects to enhance affinity estimation for improved data association, track lifecycle management, false-positive elimination, false-negative propagation, and track confidence score refinement. Our main contributions include a novel fusion approach for combining camera and LiDAR sensory signals to learn affinities, and a first-of-its-kind multimodal sequential track confidence refinement technique that fuses 2D and 3D detections. Additionally, we perform an ablative analysis on each fusion step to demonstrate the added benefits of incorporating the camera sensor, particular for small, distant objects that tend to suffer from the depth-sensing limits and sparsity of LiDAR sensors. In sum, our technique achieves state-of-the-art performance on the nuScenes benchmark amongst multimodal 3D MOT algorithms using CenterPoint detections.

  • 3 authors
·
Oct 3, 2023

CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking

Online multi-object tracking has been recently dominated by tracking-by-detection (TbD) methods, where recent advances rely on increasingly sophisticated heuristics for tracklet representation, feature fusion, and multi-stage matching. The key strength of TbD lies in its modular design, enabling the integration of specialized off-the-shelf models like motion predictors and re-identification. However, the extensive usage of human-crafted rules for temporal associations makes these methods inherently limited in their ability to capture the complex interplay between various tracking cues. In this work, we introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation, that learns resilient association strategies directly from data, breaking free from hand-crafted heuristics while maintaining TbD's valuable modularity. At its core, CAMEL employs two transformer-based modules and relies on a novel association-centric training scheme to effectively model the complex interactions between tracked targets and their various association cues. Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models. Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks. Our code is available at https://github.com/TrackingLaboratory/CAMELTrack.

  • 5 authors
·
May 2

Omnidirectional Multi-Object Tracking

Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.

  • 9 authors
·
Mar 6

Beyond MOT: Semantic Multi-Object Tracking

Current multi-object tracking (MOT) aims to predict trajectories of targets (i.e., ''where'') in videos. Yet, knowing merely ''where'' is insufficient in many crucial applications. In comparison, semantic understanding such as fine-grained behaviors, interactions, and overall summarized captions (i.e., ''what'') from videos, associated with ''where'', is highly-desired for comprehensive video analysis. Thus motivated, we introduce Semantic Multi-Object Tracking (SMOT), that aims to estimate object trajectories and meanwhile understand semantic details of associated trajectories including instance captions, instance interactions, and overall video captions, integrating ''where'' and ''what'' for tracking. In order to foster the exploration of SMOT, we propose BenSMOT, a large-scale Benchmark for Semantic MOT. Specifically, BenSMOT comprises 3,292 videos with 151K frames, covering various scenarios for semantic tracking of humans. BenSMOT provides annotations for the trajectories of targets, along with associated instance captions in natural language, instance interactions, and overall caption for each video sequence. To our best knowledge, BenSMOT is the first publicly available benchmark for SMOT. Besides, to encourage future research, we present a novel tracker named SMOTer, which is specially designed and end-to-end trained for SMOT, showing promising performance. By releasing BenSMOT, we expect to go beyond conventional MOT by predicting ''where'' and ''what'' for SMOT, opening up a new direction in tracking for video understanding. We will release BenSMOT and SMOTer at https://github.com/Nathan-Li123/SMOTer.

  • 8 authors
·
Mar 7, 2024

Collaborative Multi-Object Tracking with Conformal Uncertainty Propagation

Object detection and multiple object tracking (MOT) are essential components of self-driving systems. Accurate detection and uncertainty quantification are both critical for onboard modules, such as perception, prediction, and planning, to improve the safety and robustness of autonomous vehicles. Collaborative object detection (COD) has been proposed to improve detection accuracy and reduce uncertainty by leveraging the viewpoints of multiple agents. However, little attention has been paid to how to leverage the uncertainty quantification from COD to enhance MOT performance. In this paper, as the first attempt to address this challenge, we design an uncertainty propagation framework called MOT-CUP. Our framework first quantifies the uncertainty of COD through direct modeling and conformal prediction, and propagates this uncertainty information into the motion prediction and association steps. MOT-CUP is designed to work with different collaborative object detectors and baseline MOT algorithms. We evaluate MOT-CUP on V2X-Sim, a comprehensive collaborative perception dataset, and demonstrate a 2% improvement in accuracy and a 2.67X reduction in uncertainty compared to the baselines, e.g. SORT and ByteTrack. In scenarios characterized by high occlusion levels, our MOT-CUP demonstrates a noteworthy 4.01% improvement in accuracy. MOT-CUP demonstrates the importance of uncertainty quantification in both COD and MOT, and provides the first attempt to improve the accuracy and reduce the uncertainty in MOT based on COD through uncertainty propagation. Our code is public on https://coperception.github.io/MOT-CUP/.

  • 7 authors
·
Mar 24, 2023

Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker

In existing joint detection and tracking methods, pairwise relational features are used to match previous tracklets to current detections. However, the features may not be discriminative enough for a tracker to identify a target from a large number of detections. Selecting only high-scored detections for tracking may lead to missed detections whose confidence score is low. Consequently, in the online setting, this results in disconnections of tracklets which cannot be recovered. In this regard, we present Sparse Graph Tracker (SGT), a novel online graph tracker using higher-order relational features which are more discriminative by aggregating the features of neighboring detections and their relations. SGT converts video data into a graph where detections, their connections, and the relational features of two connected nodes are represented by nodes, edges, and edge features, respectively. The strong edge features allow SGT to track targets with tracking candidates selected by top-K scored detections with large K. As a result, even low-scored detections can be tracked, and the missed detections are also recovered. The robustness of K value is shown through the extensive experiments. In the MOT16/17/20 and HiEve Challenge, SGT outperforms the state-of-the-art trackers with real-time inference speed. Especially, a large improvement in MOTA is shown in the MOT20 and HiEve Challenge. Code is available at https://github.com/HYUNJS/SGT.

  • 4 authors
·
May 2, 2022

MMOT: The First Challenging Benchmark for Drone-based Multispectral Multi-Object Tracking

Drone-based multi-object tracking is essential yet highly challenging due to small targets, severe occlusions, and cluttered backgrounds. Existing RGB-based tracking algorithms heavily depend on spatial appearance cues such as color and texture, which often degrade in aerial views, compromising reliability. Multispectral imagery, capturing pixel-level spectral reflectance, provides crucial cues that enhance object discriminability under degraded spatial conditions. However, the lack of dedicated multispectral UAV datasets has hindered progress in this domain. To bridge this gap, we introduce MMOT, the first challenging benchmark for drone-based multispectral multi-object tracking. It features three key characteristics: (i) Large Scale - 125 video sequences with over 488.8K annotations across eight categories; (ii) Comprehensive Challenges - covering diverse conditions such as extreme small targets, high-density scenarios, severe occlusions, and complex motion; and (iii) Precise Oriented Annotations - enabling accurate localization and reduced ambiguity under aerial perspectives. To better extract spectral features and leverage oriented annotations, we further present a multispectral and orientation-aware MOT scheme adapting existing methods, featuring: (i) a lightweight Spectral 3D-Stem integrating spectral features while preserving compatibility with RGB pretraining; (ii) an orientation-aware Kalman filter for precise state estimation; and (iii) an end-to-end orientation-adaptive transformer. Extensive experiments across representative trackers consistently show that multispectral input markedly improves tracking performance over RGB baselines, particularly for small and densely packed objects. We believe our work will advance drone-based multispectral multi-object tracking research. Our MMOT, code, and benchmarks are publicly available at https://github.com/Annzstbl/MMOT.

  • 6 authors
·
Oct 14

3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking

Tracking 3D objects accurately and consistently is crucial for autonomous vehicles, enabling more reliable downstream tasks such as trajectory prediction and motion planning. Based on the substantial progress in object detection in recent years, the tracking-by-detection paradigm has become a popular choice due to its simplicity and efficiency. State-of-the-art 3D multi-object tracking (MOT) approaches typically rely on non-learned model-based algorithms such as Kalman Filter but require many manually tuned parameters. On the other hand, learning-based approaches face the problem of adapting the training to the online setting, leading to inevitable distribution mismatch between training and inference as well as suboptimal performance. In this work, we propose 3DMOTFormer, a learned geometry-based 3D MOT framework building upon the transformer architecture. We use an Edge-Augmented Graph Transformer to reason on the track-detection bipartite graph frame-by-frame and conduct data association via edge classification. To reduce the distribution mismatch between training and inference, we propose a novel online training strategy with an autoregressive and recurrent forward pass as well as sequential batch optimization. Using CenterPoint detections, our approach achieves 71.2% and 68.2% AMOTA on the nuScenes validation and test split, respectively. In addition, a trained 3DMOTFormer model generalizes well across different object detectors. Code is available at: https://github.com/dsx0511/3DMOTFormer.

  • 5 authors
·
Aug 12, 2023

DIVOTrack: A Novel Dataset and Baseline Method for Cross-View Multi-Object Tracking in DIVerse Open Scenes

Cross-view multi-object tracking aims to link objects between frames and camera views with substantial overlaps. Although cross-view multi-object tracking has received increased attention in recent years, existing datasets still have several issues, including 1) missing real-world scenarios, 2) lacking diverse scenes, 3) owning a limited number of tracks, 4) comprising only static cameras, and 5) lacking standard benchmarks, which hinder the investigation and comparison of cross-view tracking methods. To solve the aforementioned issues, we introduce DIVOTrack: a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians in realistic and non-experimental environments. Our DIVOTrack has ten distinct scenarios and 550 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available. Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT, which learns object detection, single-view association, and cross-view matching with an all-in-one embedding model. Finally, we present a summary of current methodologies and a set of standard benchmarks with our DIVOTrack to provide a fair comparison and conduct a comprehensive analysis of current approaches and our proposed CrossMOT. The dataset and code are available at https://github.com/shengyuhao/DIVOTrack.

  • 8 authors
·
Feb 15, 2023

Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization

Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

  • 4 authors
·
Sep 15

Reliable End-to-End Material Information Extraction from the Literature with Source-Tracked Multi-Stage Large Language Models

Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.

  • 6 authors
·
Oct 1

A Robust Deep Networks based Multi-Object MultiCamera Tracking System for City Scale Traffic

Vision sensors are becoming more important in Intelligent Transportation Systems (ITS) for traffic monitoring, management, and optimization as the number of network cameras continues to rise. However, manual object tracking and matching across multiple non-overlapping cameras pose significant challenges in city-scale urban traffic scenarios. These challenges include handling diverse vehicle attributes, occlusions, illumination variations, shadows, and varying video resolutions. To address these issues, we propose an efficient and cost-effective deep learning-based framework for Multi-Object Multi-Camera Tracking (MO-MCT). The proposed framework utilizes Mask R-CNN for object detection and employs Non-Maximum Suppression (NMS) to select target objects from overlapping detections. Transfer learning is employed for re-identification, enabling the association and generation of vehicle tracklets across multiple cameras. Moreover, we leverage appropriate loss functions and distance measures to handle occlusion, illumination, and shadow challenges. The final solution identification module performs feature extraction using ResNet-152 coupled with Deep SORT based vehicle tracking. The proposed framework is evaluated on the 5th AI City Challenge dataset (Track 3), comprising 46 camera feeds. Among these 46 camera streams, 40 are used for model training and validation, while the remaining six are utilized for model testing. The proposed framework achieves competitive performance with an IDF1 score of 0.8289, and precision and recall scores of 0.9026 and 0.8527 respectively, demonstrating its effectiveness in robust and accurate vehicle tracking.

  • 4 authors
·
May 1 1

TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations

Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.

  • 4 authors
·
Jan 13

Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking

Kalman filter (KF) based methods for multi-object tracking (MOT) make an assumption that objects move linearly. While this assumption is acceptable for very short periods of occlusion, linear estimates of motion for prolonged time can be highly inaccurate. Moreover, when there is no measurement available to update Kalman filter parameters, the standard convention is to trust the priori state estimations for posteriori update. This leads to the accumulation of errors during a period of occlusion. The error causes significant motion direction variance in practice. In this work, we show that a basic Kalman filter can still obtain state-of-the-art tracking performance if proper care is taken to fix the noise accumulated during occlusion. Instead of relying only on the linear state estimate (i.e., estimation-centric approach), we use object observations (i.e., the measurements by object detector) to compute a virtual trajectory over the occlusion period to fix the error accumulation of filter parameters during the occlusion period. This allows more time steps to correct errors accumulated during occlusion. We name our method Observation-Centric SORT (OC-SORT). It remains Simple, Online, and Real-Time but improves robustness during occlusion and non-linear motion. Given off-the-shelf detections as input, OC-SORT runs at 700+ FPS on a single CPU. It achieves state-of-the-art on multiple datasets, including MOT17, MOT20, KITTI, head tracking, and especially DanceTrack where the object motion is highly non-linear. The code and models are available at https://github.com/noahcao/OC_SORT.

  • 5 authors
·
Mar 27, 2022

RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking

The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git

  • 9 authors
·
Jul 11

Multiple Object Tracking as ID Prediction

Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.

  • 3 authors
·
Mar 25, 2024

FastTracker: Real-Time and Accurate Visual Tracking

Conventional multi-object tracking (MOT) systems are predominantly designed for pedestrian tracking and often exhibit limited generalization to other object categories. This paper presents a generalized tracking framework capable of handling multiple object types, with a particular emphasis on vehicle tracking in complex traffic scenes. The proposed method incorporates two key components: (1) an occlusion-aware re-identification mechanism that enhances identity preservation for heavily occluded objects, and (2) a road-structure-aware tracklet refinement strategy that utilizes semantic scene priors such as lane directions, crosswalks, and road boundaries to improve trajectory continuity and accuracy. In addition, we introduce a new benchmark dataset comprising diverse vehicle classes with frame-level tracking annotations, specifically curated to support evaluation of vehicle-focused tracking methods. Extensive experimental results demonstrate that the proposed approach achieves robust performance on both the newly introduced dataset and several public benchmarks, highlighting its effectiveness in general-purpose object tracking. While our framework is designed for generalized multi-class tracking, it also achieves strong performance on conventional benchmarks, with HOTA scores of 66.4 on MOT17 and 65.7 on MOT20 test sets. Code and Benchmark are available: github.com/Hamidreza-Hashempoor/FastTracker, huggingface.co/datasets/Hamidreza-Hashemp/FastTracker-Benchmark.

  • 2 authors
·
Aug 19

TrajectoryFormer: 3D Object Tracking Transformer with Predictive Trajectory Hypotheses

3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots. With the commonly used tracking-by-detection paradigm, 3D MOT has made important progress in recent years. However, these methods only use the detection boxes of the current frame to obtain trajectory-box association results, which makes it impossible for the tracker to recover objects missed by the detector. In this paper, we present TrajectoryFormer, a novel point-cloud-based 3D MOT framework. To recover the missed object by detector, we generates multiple trajectory hypotheses with hybrid candidate boxes, including temporally predicted boxes and current-frame detection boxes, for trajectory-box association. The predicted boxes can propagate object's history trajectory information to the current frame and thus the network can tolerate short-term miss detection of the tracked objects. We combine long-term object motion feature and short-term object appearance feature to create per-hypothesis feature embedding, which reduces the computational overhead for spatial-temporal encoding. Additionally, we introduce a Global-Local Interaction Module to conduct information interaction among all hypotheses and models their spatial relations, leading to accurate estimation of hypotheses. Our TrajectoryFormer achieves state-of-the-art performance on the Waymo 3D MOT benchmarks. Code is available at https://github.com/poodarchu/EFG .

  • 8 authors
·
Jun 9, 2023

TrackSSM: A General Motion Predictor by State-Space Model

Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S^2L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at https://github.com/Xavier-Lin/TrackSSM.

  • 5 authors
·
Aug 31, 2024

MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model

Tracking by detection has been the prevailing paradigm in the field of Multi-object Tracking (MOT). These methods typically rely on the Kalman Filter to estimate the future locations of objects, assuming linear object motion. However, they fall short when tracking objects exhibiting nonlinear and diverse motion in scenarios like dancing and sports. In addition, there has been limited focus on utilizing learning-based motion predictors in MOT. To address these challenges, we resort to exploring data-driven motion prediction methods. Inspired by the great expectation of state space models (SSMs), such as Mamba, in long-term sequence modeling with near-linear complexity, we introduce a Mamba-based motion model named Mamba moTion Predictor (MTP). MTP is designed to model the complex motion patterns of objects like dancers and athletes. Specifically, MTP takes the spatial-temporal location dynamics of objects as input, captures the motion pattern using a bi-Mamba encoding layer, and predicts the next motion. In real-world scenarios, objects may be missed due to occlusion or motion blur, leading to premature termination of their trajectories. To tackle this challenge, we further expand the application of MTP. We employ it in an autoregressive way to compensate for missing observations by utilizing its own predictions as inputs, thereby contributing to more consistent trajectories. Our proposed tracker, MambaTrack, demonstrates advanced performance on benchmarks such as Dancetrack and SportsMOT, which are characterized by complex motion and severe occlusion.

  • 4 authors
·
Aug 17, 2024

CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking

To enable self-driving vehicles accurate detection and tracking of surrounding objects is essential. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high-performance systems, the appeal of camera-only solutions lies in their cost-effectiveness. Notably, despite the prevalent use of Radio Detection and Ranging (RADAR) sensors in automotive systems, their potential in 3D detection and tracking has been largely disregarded due to data sparsity and measurement noise. As a recent development, the combination of RADARs and cameras is emerging as a promising solution. This paper presents Camera-RADAR 3D Detection and Tracking (CR3DT), a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT). Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities, by incorporating the spatial and velocity information of the RADAR sensor. Experimental results demonstrate an absolute improvement in detection performance of 5.3% in mean Average Precision (mAP) and a 14.9% increase in Average Multi-Object Tracking Accuracy (AMOTA) on the nuScenes dataset when leveraging both modalities. CR3DT bridges the gap between high-performance and cost-effective perception systems in autonomous driving, by capitalizing on the ubiquitous presence of RADAR in automotive applications. The code is available at: https://github.com/ETH-PBL/CR3DT.

  • 8 authors
·
Mar 22, 2024

Detection and Tracking Meet Drones Challenge

Drones, or general UAVs, equipped with cameras have been fast deployed with a wide range of applications, including agriculture, aerial photography, and surveillance. Consequently, automatic understanding of visual data collected from drones becomes highly demanding, bringing computer vision and drones more and more closely. To promote and track the developments of object detection and tracking algorithms, we have organized three challenge workshops in conjunction with ECCV 2018, ICCV 2019 and ECCV 2020, attracting more than 100 teams around the world. We provide a large-scale drone captured dataset, VisDrone, which includes four tracks, i.e., (1) image object detection, (2) video object detection, (3) single object tracking, and (4) multi-object tracking. In this paper, we first present a thorough review of object detection and tracking datasets and benchmarks, and discuss the challenges of collecting large-scale drone-based object detection and tracking datasets with fully manual annotations. After that, we describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South. Being the largest such dataset ever published, VisDrone enables extensive evaluation and investigation of visual analysis algorithms for the drone platform. We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions. We expect the benchmark largely boost the research and development in video analysis on drone platforms. All the datasets and experimental results can be downloaded from https://github.com/VisDrone/VisDrone-Dataset.

  • 7 authors
·
Jan 15, 2020

History-Aware Transformation of ReID Features for Multiple Object Tracking

The aim of multiple object tracking (MOT) is to detect all objects in a video and bind them into multiple trajectories. Generally, this process is carried out in two steps: detecting objects and associating them across frames based on various cues and metrics. Many studies and applications adopt object appearance, also known as re-identification (ReID) features, for target matching through straightforward similarity calculation. However, we argue that this practice is overly naive and thus overlooks the unique characteristics of MOT tasks. Unlike regular re-identification tasks that strive to distinguish all potential targets in a general representation, multi-object tracking typically immerses itself in differentiating similar targets within the same video sequence. Therefore, we believe that seeking a more suitable feature representation space based on the different sample distributions of each sequence will enhance tracking performance. In this paper, we propose using history-aware transformations on ReID features to achieve more discriminative appearance representations. Specifically, we treat historical trajectory features as conditions and employ a tailored Fisher Linear Discriminant (FLD) to find a spatial projection matrix that maximizes the differentiation between different trajectories. Our extensive experiments reveal that this training-free projection can significantly boost feature-only trackers to achieve competitive, even superior tracking performance compared to state-of-the-art methods while also demonstrating impressive zero-shot transfer capabilities. This demonstrates the effectiveness of our proposal and further encourages future investigation into the importance and customization of ReID models in multiple object tracking. The code will be released at https://github.com/HELLORPG/HATReID-MOT.

  • 4 authors
·
Mar 16

StrongSORT: Make DeepSORT Great Again

Recently, Multi-Object Tracking (MOT) has attracted rising attention, and accordingly, remarkable progresses have been achieved. However, the existing methods tend to use various basic models (e.g, detector and embedding model), and different training or inference tricks, etc. As a result, the construction of a good baseline for a fair comparison is essential. In this paper, a classic tracker, i.e., DeepSORT, is first revisited, and then is significantly improved from multiple perspectives such as object detection, feature embedding, and trajectory association. The proposed tracker, named StrongSORT, contributes a strong and fair baseline for the MOT community. Moreover, two lightweight and plug-and-play algorithms are proposed to address two inherent "missing" problems of MOT: missing association and missing detection. Specifically, unlike most methods, which associate short tracklets into complete trajectories at high computation complexity, we propose an appearance-free link model (AFLink) to perform global association without appearance information, and achieve a good balance between speed and accuracy. Furthermore, we propose a Gaussian-smoothed interpolation (GSI) based on Gaussian process regression to relieve the missing detection. AFLink and GSI can be easily plugged into various trackers with a negligible extra computational cost (1.7 ms and 7.1 ms per image, respectively, on MOT17). Finally, by fusing StrongSORT with AFLink and GSI, the final tracker (StrongSORT++) achieves state-of-the-art results on multiple public benchmarks, i.e., MOT17, MOT20, DanceTrack and KITTI. Codes are available at https://github.com/dyhBUPT/StrongSORT and https://github.com/open-mmlab/mmtracking.

  • 7 authors
·
Feb 27, 2022

DetZero: Rethinking Offboard 3D Object Detection with Long-term Sequential Point Clouds

Existing offboard 3D detectors always follow a modular pipeline design to take advantage of unlimited sequential point clouds. We have found that the full potential of offboard 3D detectors is not explored mainly due to two reasons: (1) the onboard multi-object tracker cannot generate sufficient complete object trajectories, and (2) the motion state of objects poses an inevitable challenge for the object-centric refining stage in leveraging the long-term temporal context representation. To tackle these problems, we propose a novel paradigm of offboard 3D object detection, named DetZero. Concretely, an offline tracker coupled with a multi-frame detector is proposed to focus on the completeness of generated object tracks. An attention-mechanism refining module is proposed to strengthen contextual information interaction across long-term sequential point clouds for object refining with decomposed regression methods. Extensive experiments on Waymo Open Dataset show our DetZero outperforms all state-of-the-art onboard and offboard 3D detection methods. Notably, DetZero ranks 1st place on Waymo 3D object detection leaderboard with 85.15 mAPH (L2) detection performance. Further experiments validate the application of taking the place of human labels with such high-quality results. Our empirical study leads to rethinking conventions and interesting findings that can guide future research on offboard 3D object detection.

  • 12 authors
·
Jun 9, 2023

STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes

Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.

  • 5 authors
·
Aug 14

SAGOnline: Segment Any Gaussians Online

3D Gaussian Splatting (3DGS) has emerged as a powerful paradigm for explicit 3D scene representation, yet achieving efficient and consistent 3D segmentation remains challenging. Current methods suffer from prohibitive computational costs, limited 3D spatial reasoning, and an inability to track multiple objects simultaneously. We present Segment Any Gaussians Online (SAGOnline), a lightweight and zero-shot framework for real-time 3D segmentation in Gaussian scenes that addresses these limitations through two key innovations: (1) a decoupled strategy that integrates video foundation models (e.g., SAM2) for view-consistent 2D mask propagation across synthesized views; and (2) a GPU-accelerated 3D mask generation and Gaussian-level instance labeling algorithm that assigns unique identifiers to 3D primitives, enabling lossless multi-object tracking and segmentation across views. SAGOnline achieves state-of-the-art performance on NVOS (92.7% mIoU) and Spin-NeRF (95.2% mIoU) benchmarks, outperforming Feature3DGS, OmniSeg3D-gs, and SA3D by 15--1500 times in inference speed (27 ms/frame). Qualitative results demonstrate robust multi-object segmentation and tracking in complex scenes. Our contributions include: (i) a lightweight and zero-shot framework for 3D segmentation in Gaussian scenes, (ii) explicit labeling of Gaussian primitives enabling simultaneous segmentation and tracking, and (iii) the effective adaptation of 2D video foundation models to the 3D domain. This work allows real-time rendering and 3D scene understanding, paving the way for practical AR/VR and robotic applications.

  • 10 authors
·
Aug 11

NOTSOFAR-1 Challenge: New Datasets, Baseline, and Tasks for Distant Meeting Transcription

We introduce the first Natural Office Talkers in Settings of Far-field Audio Recordings (``NOTSOFAR-1'') Challenge alongside datasets and baseline system. The challenge focuses on distant speaker diarization and automatic speech recognition (DASR) in far-field meeting scenarios, with single-channel and known-geometry multi-channel tracks, and serves as a launch platform for two new datasets: First, a benchmarking dataset of 315 meetings, averaging 6 minutes each, capturing a broad spectrum of real-world acoustic conditions and conversational dynamics. It is recorded across 30 conference rooms, featuring 4-8 attendees and a total of 35 unique speakers. Second, a 1000-hour simulated training dataset, synthesized with enhanced authenticity for real-world generalization, incorporating 15,000 real acoustic transfer functions. The tasks focus on single-device DASR, where multi-channel devices always share the same known geometry. This is aligned with common setups in actual conference rooms, and avoids technical complexities associated with multi-device tasks. It also allows for the development of geometry-specific solutions. The NOTSOFAR-1 Challenge aims to advance research in the field of distant conversational speech recognition, providing key resources to unlock the potential of data-driven methods, which we believe are currently constrained by the absence of comprehensive high-quality training and benchmarking datasets.

  • 19 authors
·
Jan 16, 2024

GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training

This paper tries to address a fundamental question in point cloud self-supervised learning: what is a good signal we should leverage to learn features from point clouds without annotations? To answer that, we introduce a point cloud representation learning framework, based on geometric feature reconstruction. In contrast to recent papers that directly adopt masked autoencoder (MAE) and only predict original coordinates or occupancy from masked point clouds, our method revisits differences between images and point clouds and identifies three self-supervised learning objectives peculiar to point clouds, namely centroid prediction, normal estimation, and curvature prediction. Combined with occupancy prediction, these four objectives yield an nontrivial self-supervised learning task and mutually facilitate models to better reason fine-grained geometry of point clouds. Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder; second, a lightweight Transformer decoder predicts centroid, normal, and curvature for points in each voxel. We transfer the pre-trained Transformer encoder to a downstream peception model. On the nuScene Datset, our model achieves 3.38 mAP improvment for object detection, 2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for multi-object tracking. We also conduct experiments on the Waymo Open Dataset and achieve significant performance improvements over baselines as well.

  • 4 authors
·
May 15, 2023

Towards Effective Multi-Moving-Camera Tracking: A New Dataset and Lightweight Link Model

Ensuring driving safety for autonomous vehicles has become increasingly crucial, highlighting the need for systematic tracking of on-road pedestrians. Most vehicles are equipped with visual sensors, however, the large-scale visual data has not been well studied yet. Multi-target multi-camera (MTMC) tracking systems are composed of two modules: single-camera tracking (SCT) and inter-camera tracking (ICT). To reliably coordinate between them, MTMC tracking has been a very complicated task, while tracking across multiple moving cameras makes it even more challenging. In this paper, we focus on multi-target multi-moving-camera (MTMMC) tracking, which is attracting increasing attention from the research community. Observing there are few datasets for MTMMC tracking, we collect a new dataset, called Multi-Moving-Camera Track (MMCT), which contains sequences under various driving scenarios. To address the common problems of identity switch easily faced by most existing SCT trackers, especially for moving cameras due to ego-motion between the camera and targets, a lightweight appearance-free global link model, called Linker, is proposed to mitigate the identity switch by associating two disjoint tracklets of the same target into a complete trajectory within the same camera. Incorporated with Linker, existing SCT trackers generally obtain a significant improvement. Moreover, to alleviate the impact of the image style variations caused by different cameras, a color transfer module is effectively incorporated to extract cross-camera consistent appearance features for pedestrian association across moving cameras for ICT, resulting in a much improved MTMMC tracking system, which can constitute a step further towards coordinated mining of multiple moving cameras. The project page is available at https://dhu-mmct.github.io/.

  • 5 authors
·
Dec 18, 2023

Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter

Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative detection and leave cooperative tracking an underexplored research field. A few recent datasets, such as V2V4Real, provide 3D multi-object cooperative tracking benchmarks. However, their proposed methods mainly use cooperative detection results as input to a standard single-sensor Kalman Filter-based tracking algorithm. In their approach, the measurement uncertainty of different sensors from different connected autonomous vehicles (CAVs) may not be properly estimated to utilize the theoretical optimality property of Kalman Filter-based tracking algorithms. In this paper, we propose a novel 3D multi-object cooperative tracking algorithm for autonomous driving via a differentiable multi-sensor Kalman Filter. Our algorithm learns to estimate measurement uncertainty for each detection that can better utilize the theoretical property of Kalman Filter-based tracking methods. The experiment results show that our algorithm improves the tracking accuracy by 17% with only 0.037x communication costs compared with the state-of-the-art method in V2V4Real. Our code and videos are available at https://github.com/eddyhkchiu/DMSTrack/ and https://eddyhkchiu.github.io/dmstrack.github.io/ .

  • 4 authors
·
Sep 26, 2023

HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos

We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.

  • 14 authors
·
Nov 28, 2024

3D-MuPPET: 3D Multi-Pigeon Pose Estimation and Tracking

Markerless methods for animal posture tracking have been rapidly developing recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap in the literature, we present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. We train a pose estimator to infer 2D keypoints and bounding boxes of multiple pigeons, then triangulate the keypoints to 3D. For identity matching of individuals in all views, we first dynamically match 2D detections to global identities in the first frame, then use a 2D tracker to maintain IDs across views in subsequent frames. We achieve comparable accuracy to a state of the art 3D pose estimator in terms of median error and Percentage of Correct Keypoints. Additionally, we benchmark the inference speed of 3D-MuPPET, with up to 9.45 fps in 2D and 1.89 fps in 3D, and perform quantitative tracking evaluation, which yields encouraging results. Finally, we showcase two novel applications for 3D-MuPPET. First, we train a model with data of single pigeons and achieve comparable results in 2D and 3D posture estimation for up to 5 pigeons. Second, we show that 3D-MuPPET also works in outdoors without additional annotations from natural environments. Both use cases simplify the domain shift to new species and environments, largely reducing annotation effort needed for 3D posture tracking. To the best of our knowledge we are the first to present a framework for 2D/3D animal posture and trajectory tracking that works in both indoor and outdoor environments for up to 10 individuals. We hope that the framework can open up new opportunities in studying animal collective behaviour and encourages further developments in 3D multi-animal posture tracking.

  • 8 authors
·
Aug 29, 2023

MEMTRACK: Evaluating Long-Term Memory and State Tracking in Multi-Platform Dynamic Agent Environments

Recent works on context and memory benchmarking have primarily focused on conversational instances but the need for evaluating memory in dynamic enterprise environments is crucial for its effective application. We introduce MEMTRACK, a benchmark designed to evaluate long-term memory and state tracking in multi-platform agent environments. MEMTRACK models realistic organizational workflows by integrating asynchronous events across multiple communication and productivity platforms such as Slack, Linear and Git. Each benchmark instance provides a chronologically platform-interleaved timeline, with noisy, conflicting, cross-referring information as well as potential codebase/file-system comprehension and exploration. Consequently, our benchmark tests memory capabilities such as acquistion, selection and conflict resolution. We curate the MEMTRACK dataset through both manual expert driven design and scalable agent based synthesis, generating ecologically valid scenarios grounded in real world software development processes. We introduce pertinent metrics for Correctness, Efficiency, and Redundancy that capture the effectiveness of memory mechanisms beyond simple QA performance. Experiments across SoTA LLMs and memory backends reveal challenges in utilizing memory across long horizons, handling cross-platform dependencies, and resolving contradictions. Notably, the best performing GPT-5 model only achieves a 60\% Correctness score on MEMTRACK. This work provides an extensible framework for advancing evaluation research for memory-augmented agents, beyond existing focus on conversational setups, and sets the stage for multi-agent, multi-platform memory benchmarking in complex organizational settings

PatronusAI Patronus AI
·
Oct 1 2

Joint Visual Grounding and Tracking with Natural Language Specification

Tracking by natural language specification aims to locate the referred target in a sequence based on the natural language description. Existing algorithms solve this issue in two steps, visual grounding and tracking, and accordingly deploy the separated grounding model and tracking model to implement these two steps, respectively. Such a separated framework overlooks the link between visual grounding and tracking, which is that the natural language descriptions provide global semantic cues for localizing the target for both two steps. Besides, the separated framework can hardly be trained end-to-end. To handle these issues, we propose a joint visual grounding and tracking framework, which reformulates grounding and tracking as a unified task: localizing the referred target based on the given visual-language references. Specifically, we propose a multi-source relation modeling module to effectively build the relation between the visual-language references and the test image. In addition, we design a temporal modeling module to provide a temporal clue with the guidance of the global semantic information for our model, which effectively improves the adaptability to the appearance variations of the target. Extensive experimental results on TNL2K, LaSOT, OTB99, and RefCOCOg demonstrate that our method performs favorably against state-of-the-art algorithms for both tracking and grounding. Code is available at https://github.com/lizhou-cs/JointNLT.

  • 4 authors
·
Mar 21, 2023