new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jul 2

SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models

Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.

Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models

Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.

Better Language Model Inversion by Compactly Representing Next-Token Distributions

Language model inversion seeks to recover hidden prompts using only language model outputs. This capability has implications for security and accountability in language model deployments, such as leaking private information from an API-protected language model's system message. We propose a new method -- prompt inversion from logprob sequences (PILS) -- that recovers hidden prompts by gleaning clues from the model's next-token probabilities over the course of multiple generation steps. Our method is enabled by a key insight: The vector-valued outputs of a language model occupy a low-dimensional subspace. This enables us to losslessly compress the full next-token probability distribution over multiple generation steps using a linear map, allowing more output information to be used for inversion. Our approach yields massive gains over previous state-of-the-art methods for recovering hidden prompts, achieving 2--3.5 times higher exact recovery rates across test sets, in one case increasing the recovery rate from 17% to 60%. Our method also exhibits surprisingly good generalization behavior; for instance, an inverter trained on 16 generations steps gets 5--27 points higher prompt recovery when we increase the number of steps to 32 at test time. Furthermore, we demonstrate strong performance of our method on the more challenging task of recovering hidden system messages. We also analyze the role of verbatim repetition in prompt recovery and propose a new method for cross-family model transfer for logit-based inverters. Our findings show that next-token probabilities are a considerably more vulnerable attack surface for inversion attacks than previously known.

I Know Which LLM Wrote Your Code Last Summer: LLM generated Code Stylometry for Authorship Attribution

Detecting AI-generated code, deepfakes, and other synthetic content is an emerging research challenge. As code generated by Large Language Models (LLMs) becomes more common, identifying the specific model behind each sample is increasingly important. This paper presents the first systematic study of LLM authorship attribution for C programs. We released CodeT5-Authorship, a novel model that uses only the encoder layers from the original CodeT5 encoder-decoder architecture, discarding the decoder to focus on classification. Our model's encoder output (first token) is passed through a two-layer classification head with GELU activation and dropout, producing a probability distribution over possible authors. To evaluate our approach, we introduce LLM-AuthorBench, a benchmark of 32,000 compilable C programs generated by eight state-of-the-art LLMs across diverse tasks. We compare our model to seven traditional ML classifiers and eight fine-tuned transformer models, including BERT, RoBERTa, CodeBERT, ModernBERT, DistilBERT, DeBERTa-V3, Longformer, and LoRA-fine-tuned Qwen2-1.5B. In binary classification, our model achieves 97.56% accuracy in distinguishing C programs generated by closely related models such as GPT-4.1 and GPT-4o, and 95.40% accuracy for multi-class attribution among five leading LLMs (Gemini 2.5 Flash, Claude 3.5 Haiku, GPT-4.1, Llama 3.3, and DeepSeek-V3). To support open science, we release the CodeT5-Authorship architecture, the LLM-AuthorBench benchmark, and all relevant Google Colab scripts on GitHub: https://github.com/LLMauthorbench/.

ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation

Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views. Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution. However, each approach has its limitations. On one hand, directly regressing the camera poses can be ill-posed, since it assumes a single mode, which is not true under symmetry and leads to sub-optimal solutions. On the other hand, probabilistic approaches are capable of modeling the symmetry ambiguity, yet they sample the entire space of rotation uniformly by brute-force. This leads to an inevitable trade-off between high sample density, which improves model precision, and sample efficiency that determines the runtime. In this paper, we propose ADen to unify the two frameworks by employing a generator and a discriminator: the generator is trained to output multiple hypotheses of 6DoF camera pose to represent a distribution and handle multi-mode ambiguity, and the discriminator is trained to identify the hypothesis that best explains the data. This allows ADen to combine the best of both worlds, achieving substantially higher precision as well as lower runtime than previous methods in empirical evaluations.

How Alignment Shrinks the Generative Horizon

Despite their impressive capabilities, aligned large language models (LLMs) often generate outputs that lack diversity. What drives this stability in the generation? We investigate this phenomenon through the lens of probability concentration in the model's output distribution. To quantify this concentration, we introduce the Branching Factor (BF) -- a token-invariant measure of the effective number of plausible next steps during generation. Our empirical analysis reveals two key findings: (1) BF often decreases as generation progresses, suggesting that LLMs become more predictable as they generate. (2) alignment tuning substantially sharpens the model's output distribution from the outset, reducing BF by nearly an order of magnitude (e.g., from 12 to 1.2) relative to base models. This stark reduction helps explain why aligned models often appear less sensitive to decoding strategies. Building on this insight, we find this stability has surprising implications for complex reasoning. Aligned Chain-of-Thought (CoT) models (e.g., DeepSeek-distilled models), for instance, leverage this effect; by generating longer reasoning chains, they push generation into later, more deterministic (lower BF) stages, resulting in more stable outputs. We hypothesize that alignment tuning does not fundamentally change a model's behavior, but instead steers it toward stylistic tokens (e.g., "Sure") that unlock low-entropy trajectories already present in the base model. This view is supported by nudging experiments, which show that prompting base models with such tokens can similarly reduce BF. Together, our findings establish BF as a powerful diagnostic for understanding and controlling LLM outputs - clarifying how alignment reduces variability, how CoT promotes stable generations, and how base models can be steered away from diversity.

Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning

Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy but fails to improve capability, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR does not improve capability because it focuses on improving the accuracy of the less-difficult questions to the detriment of the accuracy of the most difficult questions, thereby leading to no improvement in capability. Second, we find that RLVR does not merely increase the success probability for the less difficult questions, but in our small model settings produces quality responses that were absent in its output distribution before training. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, we show that while distillation reliably improves accuracy by learning strong reasoning patterns, it only improves capability when new knowledge is introduced. Moreover, when distilling only with reasoning patterns and no new knowledge, the accuracy of the less-difficult questions improves to the detriment of the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in language models.

Grammar-Aligned Decoding

Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.

$Π$-NeSy: A Possibilistic Neuro-Symbolic Approach

In this article, we introduce a neuro-symbolic approach that combines a low-level perception task performed by a neural network with a high-level reasoning task performed by a possibilistic rule-based system. The goal is to be able to derive for each input instance the degree of possibility that it belongs to a target (meta-)concept. This (meta-)concept is connected to intermediate concepts by a possibilistic rule-based system. The probability of each intermediate concept for the input instance is inferred using a neural network. The connection between the low-level perception task and the high-level reasoning task lies in the transformation of neural network outputs modeled by probability distributions (through softmax activation) into possibility distributions. The use of intermediate concepts is valuable for the explanation purpose: using the rule-based system, the classification of an input instance as an element of the (meta-)concept can be justified by the fact that intermediate concepts have been recognized. From the technical side, our contribution consists of the design of efficient methods for defining the matrix relation and the equation system associated with a possibilistic rule-based system. The corresponding matrix and equation are key data structures used to perform inferences from a possibilistic rule-based system and to learn the values of the rule parameters in such a system according to a training data sample. Furthermore, leveraging recent results on the handling of inconsistent systems of fuzzy relational equations, an approach for learning rule parameters according to multiple training data samples is presented. Experiments carried out on the MNIST addition problems and the MNIST Sudoku puzzles problems highlight the effectiveness of our approach compared with state-of-the-art neuro-symbolic ones.

Fourier Head: Helping Large Language Models Learn Complex Probability Distributions

As the quality of large language models has improved, there has been increased interest in using them to model non-linguistic tokens. For example, the Decision Transformer recasts agentic decision making as a sequence modeling problem, using a decoder-only LLM to model the distribution over the discrete action space for an Atari agent. However, when adapting LLMs to non-linguistic domains, it remains unclear if softmax over discrete bins captures the continuous structure of the tokens and the potentially complex distributions needed for high quality token generation. We introduce a neural network layer, constructed using Fourier series, which we can easily substitute for any linear layer if we want the outputs to have a more continuous structure. We perform extensive analysis on synthetic datasets, as well as on large-scale decision making and time series forecasting tasks. We also provide theoretical evidence that this layer can better learn signal from data while ignoring high-frequency noise. All of our results support the effectiveness of our proposed Fourier head in scenarios where the underlying data distribution has a natural continuous structure. For example, the Fourier head improves a Decision Transformer agent's returns by 46% on the Atari Seaquest game, and increases a state-of-the-art times series foundation model's forecasting performance by 3.5% across 20 benchmarks unseen during training.

Utility-Probability Duality of Neural Networks

It is typically understood that the training of modern neural networks is a process of fitting the probability distribution of desired output. However, recent paradoxical observations in a number of language generation tasks let one wonder if this canonical probability-based explanation can really account for the empirical success of deep learning. To resolve this issue, we propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning. The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function that encodes the preference revealed in training data. In this perspective, training of the neural network corresponds to a utility learning process. Specifically, we show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation (MLE) can be seen as an iteration process that optimizes the neural network toward an optimal utility function. This utility-based interpretation can explain several otherwise-paradoxical observations about the neural networks thus trained. Moreover, our utility-based theory also entails an equation that can transform the learned utility values back to a new kind of probability estimation with which probability-compatible decision rules enjoy dramatic (double-digits) performance improvements. These evidences collectively reveal a phenomenon of utility-probability duality in terms of what modern neural networks are (truly) modeling: We thought they are one thing (probabilities), until the unexplainable showed up; changing mindset and treating them as another thing (utility values) largely reconcile the theory, despite remaining subtleties regarding its original (probabilistic) identity.

PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method

As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called "PhaseNet" that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals, and noise as output. We engineer PhaseNet such that peaks in probability provide accurate arrival times for both P and S waves, and have the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models. PhaseNet is trained on the prodigious available data set provided by analyst-labeled P and S arrival times from the Northern California Earthquake Data Center. The dataset we use contains more than seven million waveform samples extracted from over thirty years of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods.

Scalable Best-of-N Selection for Large Language Models via Self-Certainty

Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size N, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty

Improving In-context Learning via Bidirectional Alignment

Large language models (LLMs) have shown impressive few-shot generalization on many tasks via in-context learning (ICL). Despite their success in showing such emergent abilities, the scale and complexity of larger models also lead to unprecedentedly high computational demands and deployment challenges. In reaction, researchers explore transferring the powerful capabilities of larger models to more efficient and compact models by typically aligning the output of smaller models with that of larger models. Existing methods either train smaller models on the generated outputs of larger models or to imitate their token-level probability distributions. However, these distillation methods pay little to no attention to the input part, which also plays a crucial role in ICL. Based on the finding that the performance of ICL is highly sensitive to the selection of demonstration examples, we propose Bidirectional Alignment (BiAlign) to fully leverage the models' preferences for ICL examples to improve the ICL abilities of smaller models. Specifically, we introduce the alignment of input preferences between smaller and larger models by incorporating a novel ranking loss, in addition to aligning the token-level output distribution. With extensive experiments and analysis, we demonstrate that BiAlign can consistently outperform existing baselines on a variety of tasks including language understanding, reasoning, and coding.

RITUAL: Random Image Transformations as a Universal Anti-hallucination Lever in LVLMs

Recent advancements in Large Vision Language Models (LVLMs) have revolutionized how machines understand and generate textual responses based on visual inputs. Despite their impressive capabilities, they often produce "hallucinatory" outputs that do not accurately reflect the visual information, posing challenges in reliability and trustworthiness. Current methods such as contrastive decoding have made strides in addressing these issues by contrasting the original probability distribution of generated tokens with distorted counterparts; yet, generating visually-faithful outputs remains a challenge. In this work, we shift our focus to the opposite: What could serve as a complementary enhancement to the original probability distribution? We propose a simple, training-free method termed RITUAL to enhance robustness against hallucinations in LVLMs. Our approach employs random image transformations as complements to the original probability distribution, aiming to mitigate the likelihood of hallucinatory visual explanations by enriching the model's exposure to varied visual scenarios. Our empirical results show that while the isolated use of transformed images initially degrades performance, strategic implementation of these transformations can indeed serve as effective complements. Notably, our method is compatible with current contrastive decoding methods and does not require external models or costly self-feedback mechanisms, making it a practical addition. In experiments, RITUAL significantly outperforms existing contrastive decoding methods across several object hallucination benchmarks, including POPE, CHAIR, and MME.

Deep Probability Estimation

Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.

A likelihood approach to nonparametric estimation of a singular distribution using deep generative models

We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.

Continuous Speculative Decoding for Autoregressive Image Generation

Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts, showcasing considerable reconstruction quality and higher generation fidelity. However, the computational demands of the autoregressive framework result in significant inference overhead. While speculative decoding has proven effective in accelerating Large Language Models (LLMs), their adaptation to continuous-valued visual autoregressive models remains unexplored. This work generalizes the speculative decoding algorithm from discrete tokens to continuous space. By analyzing the intrinsic properties of output distribution, we establish a tailored acceptance criterion for the diffusion distributions prevalent in such models. To overcome the inconsistency that occurred in speculative decoding output distributions, we introduce denoising trajectory alignment and token pre-filling methods. Additionally, we identify the hard-to-sample distribution in the rejection phase. To mitigate this issue, we propose a meticulous acceptance-rejection sampling method with a proper upper bound, thereby circumventing complex integration. Experimental results show that our continuous speculative decoding achieves a remarkable 2.33times speed-up on off-the-shelf models while maintaining the output distribution. Codes will be available at https://github.com/MarkXCloud/CSpD

The probabilistic world

Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

Martingale Posterior Neural Processes

A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.

Denotational validation of higher-order Bayesian inference

We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.

Causal Inference by String Diagram Surgery

Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.

Generative Distribution Embeddings

Many real-world problems require reasoning across multiple scales, demanding models which operate not on single data points, but on entire distributions. We introduce generative distribution embeddings (GDE), a framework that lifts autoencoders to the space of distributions. In GDEs, an encoder acts on sets of samples, and the decoder is replaced by a generator which aims to match the input distribution. This framework enables learning representations of distributions by coupling conditional generative models with encoder networks which satisfy a criterion we call distributional invariance. We show that GDEs learn predictive sufficient statistics embedded in the Wasserstein space, such that latent GDE distances approximately recover the W_2 distance, and latent interpolation approximately recovers optimal transport trajectories for Gaussian and Gaussian mixture distributions. We systematically benchmark GDEs against existing approaches on synthetic datasets, demonstrating consistently stronger performance. We then apply GDEs to six key problems in computational biology: learning representations of cell populations from lineage-tracing data (150K cells), predicting perturbation effects on single-cell transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell images), modeling tissue-specific DNA methylation patterns (253M sequences), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of viral protein sequences (1M sequences).

Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation

While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

Linear statistics for Coulomb gases: higher order cumulants

We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.

Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods

Mixed Integer Linear Programming (MILP) is a fundamental tool for modeling combinatorial optimization problems. Recently, a growing body of research has used machine learning to accelerate MILP solving. Despite the increasing popularity of this approach, there is a lack of a common repository that provides distributions of similar MILP instances across different domains, at different hardness levels, with standardized test sets. In this paper, we introduce Distributional MIPLIB, a multi-domain library of problem distributions for advancing ML-guided MILP methods. We curate MILP distributions from existing work in this area as well as real-world problems that have not been used, and classify them into different hardness levels. It will facilitate research in this area by enabling comprehensive evaluation on diverse and realistic domains. We empirically illustrate the benefits of using Distributional MIPLIB as a research vehicle in two ways. We evaluate the performance of ML-guided variable branching on previously unused distributions to identify potential areas for improvement. Moreover, we propose to learn branching policies from a mix of distributions, demonstrating that mixed distributions achieve better performance compared to homogeneous distributions when there is limited data and generalize well to larger instances. The dataset is publicly available at https://sites.google.com/usc.edu/distributional-miplib/home.

An Efficient Tester-Learner for Halfspaces

We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.

Von Mises Mixture Distributions for Molecular Conformation Generation

Molecules are frequently represented as graphs, but the underlying 3D molecular geometry (the locations of the atoms) ultimately determines most molecular properties. However, most molecules are not static and at room temperature adopt a wide variety of geometries or conformations. The resulting distribution on geometries p(x) is known as the Boltzmann distribution, and many molecular properties are expectations computed under this distribution. Generating accurate samples from the Boltzmann distribution is therefore essential for computing these expectations accurately. Traditional sampling-based methods are computationally expensive, and most recent machine learning-based methods have focused on identifying modes in this distribution rather than generating true samples. Generating such samples requires capturing conformational variability, and it has been widely recognized that the majority of conformational variability in molecules arises from rotatable bonds. In this work, we present VonMisesNet, a new graph neural network that captures conformational variability via a variational approximation of rotatable bond torsion angles as a mixture of von Mises distributions. We demonstrate that VonMisesNet can generate conformations for arbitrary molecules in a way that is both physically accurate with respect to the Boltzmann distribution and orders of magnitude faster than existing sampling methods.

The implications of stochastic gas torques for asymmetric binaries in the LISA band

Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.

Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations

Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.

Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning

In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

On Kinetic Optimal Probability Paths for Generative Models

Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the data separation function. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to 1 in the general case of arbitrary normalized dataset consisting of n samples in d dimension as n/drightarrow 0. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes kinetic optimal as n/drightarrow 0. We further support this theory with empirical experiments on ImageNet.