Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFrom Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.
Boosting Process-Correct CoT Reasoning by Modeling Solvability of Multiple-Choice QA
Reasoning quality in large language models depends not only on producing correct answers but also on generating valid intermediate steps. We study this through multiple-choice question answering (MCQA), which provides a controlled setting with fixed answer options. Our analysis shows that when questions are effectively unsolvable for a model, spurious chains of thought (CoTs) are more likely to appear, leading to false positives. By estimating the solvability of each question, we uncover an intermediate regime where learning is most effective. Building on this insight, we adapt outcome-supervised reward models and reinforcement learning with group-relative advantage to incorporate solvability into their objectives. Across experiments on math and multimodal datasets, these modifications consistently yield higher rates of process-correct reasoning and, in reinforcement learning, improved answer accuracy as well. Our results highlight solvability as a key factor for reducing hallucinations and increasing reliability in CoT reasoning.
Reasoning Riddles: How Explainability Reveals Cognitive Limits in Vision-Language Models
Vision-Language Models (VLMs) excel at many multimodal tasks, yet their cognitive processes remain opaque on complex lateral thinking challenges like rebus puzzles. While recent work has demonstrated these models struggle significantly with rebus puzzle solving, the underlying reasoning processes and failure patterns remain largely unexplored. We address this gap through a comprehensive explainability analysis that moves beyond performance metrics to understand how VLMs approach these complex lateral thinking challenges. Our study contributes a systematically annotated dataset of 221 rebus puzzles across six cognitive categories, paired with an evaluation framework that separates reasoning quality from answer correctness. We investigate three prompting strategies designed to elicit different types of explanatory processes and reveal critical insights into VLM cognitive processes. Our findings demonstrate that reasoning quality varies dramatically across puzzle categories, with models showing systematic strengths in visual composition while exhibiting fundamental limitations in absence interpretation and cultural symbolism. We also discover that prompting strategy substantially influences both cognitive approach and problem-solving effectiveness, establishing explainability as an integral component of model performance rather than a post-hoc consideration.
DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.
Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases
Recent advancements in reasoning-enhanced large language models (LLMs), such as DeepSeek-R1 and OpenAI-o3, have demonstrated significant progress. However, their application in professional medical contexts remains underexplored, particularly in evaluating the quality of their reasoning processes alongside final outputs. Here, we introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references derived from clinical case reports. Spanning 13 body systems and 10 specialties, it includes both common and rare diseases. To comprehensively evaluate LLM performance, we propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey. To assess reasoning quality, we present the Reasoning Evaluator, a novel automated system that objectively scores free-text reasoning responses based on efficiency, actuality, and completeness using dynamic cross-referencing and evidence checks. Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc. Our results show that current LLMs achieve over 85% accuracy in relatively simple diagnostic tasks when provided with sufficient examination results. However, performance declines in more complex tasks, such as examination recommendation and treatment planning. While reasoning outputs are generally reliable, with factuality scores exceeding 90%, critical reasoning steps are frequently missed. These findings underscore both the progress and limitations of clinical LLMs. Notably, open-source models like DeepSeek-R1 are narrowing the gap with proprietary systems, highlighting their potential to drive accessible and equitable advancements in healthcare.
Alpamayo-R1: Bridging Reasoning and Action Prediction for Generalizable Autonomous Driving in the Long Tail
End-to-end architectures trained via imitation learning have advanced autonomous driving by scaling model size and data, yet performance remains brittle in safety-critical long-tail scenarios where supervision is sparse and causal understanding is limited. To address this, we introduce Alpamayo-R1 (AR1), a vision-language-action model (VLA) that integrates Chain of Causation reasoning with trajectory planning to enhance decision-making in complex driving scenarios. Our approach features three key innovations: (1) the Chain of Causation (CoC) dataset, built through a hybrid auto-labeling and human-in-the-loop pipeline producing decision-grounded, causally linked reasoning traces aligned with driving behaviors; (2) a modular VLA architecture combining Cosmos-Reason, a Vision-Language Model pre-trained for Physical AI applications, with a diffusion-based trajectory decoder that generates dynamically feasible plans in real time; (3) a multi-stage training strategy using supervised fine-tuning to elicit reasoning and reinforcement learning (RL) to optimize reasoning quality via large reasoning model feedback and enforce reasoning-action consistency. Evaluation shows AR1 achieves up to a 12% improvement in planning accuracy on challenging cases compared to a trajectory-only baseline, with a 35% reduction in off-road rate and 25% reduction in close encounter rate in closed-loop simulation. RL post-training improves reasoning quality by 45% as measured by a large reasoning model critic and reasoning-action consistency by 37%. Model scaling from 0.5B to 7B parameters shows consistent improvements. On-vehicle road tests confirm real-time performance (99 ms latency) and successful urban deployment. By bridging interpretable reasoning with precise control, AR1 demonstrates a practical path towards Level 4 autonomous driving. We plan to release AR1 models and a subset of the CoC in a future update.
MARS: toward more efficient multi-agent collaboration for LLM reasoning
Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS.
Posterior-GRPO: Rewarding Reasoning Processes in Code Generation
Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.
MUR: Momentum Uncertainty guided Reasoning for Large Language Models
Large Language Models (LLMs) have achieved impressive performance on reasoning-intensive tasks, yet optimizing their reasoning efficiency remains an open challenge. While Test-Time Scaling (TTS) improves reasoning quality, it often leads to overthinking, wasting tokens on redundant computations. This work investigates how to efficiently and adaptively guide LLM test-time scaling without additional training. Inspired by the concept of momentum in physics, we propose Momentum Uncertainty-guided Reasoning (MUR), which dynamically allocates thinking budgets to critical reasoning steps by tracking and aggregating stepwise uncertainty over time. To support flexible inference-time control, we introduce gamma-control, a simple mechanism that tunes the reasoning budget via a single hyperparameter. We provide in-depth theoretical proof to support the superiority of MUR in terms of stability and biases. MUR is comprehensively evaluated against various TTS methods across four challenging benchmarks (MATH-500, AIME24, AIME25, and GPQA-diamond) using different sizes of recent Qwen3 models (1.7B, 4B, and 8B). Results demonstrate that MUR reduces computation by over 50% on average while improving accuracy by 0.62-3.37%.
Group Think: Multiple Concurrent Reasoning Agents Collaborating at Token Level Granularity
Recent advances in large language models (LLMs) have demonstrated the power of reasoning through self-generated chains of thought. Multiple reasoning agents can collaborate to raise joint reasoning quality above individual outcomes. However, such agents typically interact in a turn-based manner, trading increased latency for improved quality. In this paper, we propose Group Think--a single LLM that acts as multiple concurrent reasoning agents, or thinkers. With shared visibility into each other's partial generation progress, Group Think introduces a new concurrent-reasoning paradigm in which multiple reasoning trajectories adapt dynamically to one another at the token level. For example, a reasoning thread may shift its generation mid-sentence upon detecting that another thread is better positioned to continue. This fine-grained, token-level collaboration enables Group Think to reduce redundant reasoning and improve quality while achieving significantly lower latency. Moreover, its concurrent nature allows for efficient utilization of idle computational resources, making it especially suitable for edge inference, where very small batch size often underutilizes local~GPUs. We give a simple and generalizable modification that enables any existing LLM to perform Group Think on a local GPU. We also present an evaluation strategy to benchmark reasoning latency and empirically demonstrate latency improvements using open-source LLMs that were not explicitly trained for Group Think. We hope this work paves the way for future LLMs to exhibit more sophisticated and more efficient collaborative behavior for higher quality generation.
VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
Guided Reasoning: A Non-Technical Introduction
We introduce the concept and a default implementation of Guided Reasoning. A multi-agent system is a Guided Reasoning system iff one agent (the guide) primarily interacts with other agents in order to improve reasoning quality. We describe Logikon's default implementation of Guided Reasoning in non-technical terms. This is a living document we'll gradually enrich with more detailed information and examples. Code: https://github.com/logikon-ai/logikon
Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily compress verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but still rely on explicit reasoning during inference. In this work, we introduce 3TF (Thought-Training and Thought-Free inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
Accelerating LLM Reasoning via Early Rejection with Partial Reward Modeling
Large Language Models (LLMs) are increasingly relied upon for solving complex reasoning tasks in domains such as mathematics, logic, and multi-step question answering. A growing line of work seeks to improve reasoning quality by scaling inference time compute particularly through Process Reward Models (PRMs), used to reward the reasoning at intermediate steps. While effective, these methods introduce substantial computational overhead, especially when generating large numbers of solutions in parallel. In this paper, we investigate whether PRMs can be used mid-generation to provide early signals that enable the rejection of suboptimal candidates before full generation of step is complete. We introduce the hypothesis that PRMs are also Partial Reward Models, meaning that the scores they assign to partially completed reasoning step are predictive of final output quality. This allows for principled early rejection based on intermediate token-level signals. We support this hypothesis both theoretically, by proving that the risk of discarding optimal beams decreases exponentially with generation length and empirically, by demonstrating a strong correlation between partial and final rewards across multiple reward models. On math reasoning benchmarks, our method achieves up to 1.4times-9times reduction in inference FLOPs without degrading final performance. These results suggest that early rejection is a powerful mechanism for improving the compute-efficiency of reasoning in LLMs.
Towards Better Understanding of Program-of-Thought Reasoning in Cross-Lingual and Multilingual Environments
Multi-step reasoning is essential for large language models (LLMs), yet multilingual performance remains challenging. While Chain-of-Thought (CoT) prompting improves reasoning, it struggles with non-English languages due to the entanglement of reasoning and execution. Program-of-Thought (PoT) prompting separates reasoning from execution, offering a promising alternative but shifting the challenge to generating programs from non-English questions. We propose a framework to evaluate PoT by separating multilingual reasoning from code execution to examine (i) the impact of fine-tuning on question-reasoning alignment and (ii) how reasoning quality affects answer correctness. Our findings demonstrate that PoT fine-tuning substantially enhances multilingual reasoning, outperforming CoT fine-tuned models. We further demonstrate a strong correlation between reasoning quality (measured through code quality) and answer accuracy, highlighting its potential as a test-time performance improvement heuristic.
JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question-answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (67.7%) on a medical question-answering dataset. Comprehensive evaluations reveal JMLR-13B enhances reasoning quality and reduces hallucinations better than Claude3-Opus. Additionally, JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement method for healthcare, demonstrating the potential of integrating retrieval and LLM training for medical question-answering systems.
MMMR: Benchmarking Massive Multi-Modal Reasoning Tasks
Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMMR, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMMR comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMMR offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.
Reasoning Language Models for Root Cause Analysis in 5G Wireless Networks
Root Cause Analysis (RCA) in mobile networks remains a challenging task due to the need for interpretability, domain expertise, and causal reasoning. In this work, we propose a lightweight framework that leverages Large Language Models (LLMs) for RCA. To do so, we introduce TeleLogs, a curated dataset of annotated troubleshooting problems designed to benchmark RCA capabilities. Our evaluation reveals that existing open-source reasoning LLMs struggle with these problems, underscoring the need for domain-specific adaptation. To address this issue, we propose a two-stage training methodology that combines supervised fine-tuning with reinforcement learning to improve the accuracy and reasoning quality of LLMs. The proposed approach fine-tunes a series of RCA models to integrate domain knowledge and generate structured, multi-step diagnostic explanations, improving both interpretability and effectiveness. Extensive experiments across multiple LLM sizes show significant performance gains over state-of-the-art reasoning and non-reasoning models, including strong generalization to randomized test variants. These results demonstrate the promise of domain-adapted, reasoning-enhanced LLMs for practical and explainable RCA in network operation and management.
Evaluating Mathematical Reasoning Beyond Accuracy
The leaderboard of Large Language Models (LLMs) in mathematical tasks has been continuously updated. However, the majority of evaluations focus solely on the final results, neglecting the quality of the intermediate steps. This oversight can mask underlying problems, such as logical errors or unnecessary steps in the reasoning process. To measure reasoning beyond final-answer accuracy, we introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps. ReasonEval employs validity and redundancy to characterize the reasoning quality, as well as accompanying LLMs to assess them automatically. Instantiated by base models that possess strong mathematical knowledge and trained with high-quality labeled data, ReasonEval achieves state-of-the-art performance on human-labeled datasets and can accurately detect different types of errors generated by perturbation. When applied to evaluate LLMs specialized in math, we find that an increase in final-answer accuracy does not necessarily guarantee an improvement in the overall quality of the reasoning steps for challenging mathematical problems. Additionally, we observe that ReasonEval can play a significant role in data selection. We release the best-performing model, meta-evaluation script, and all evaluation results at https://github.com/GAIR-NLP/ReasonEval.
Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation
Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE
PixelThink: Towards Efficient Chain-of-Pixel Reasoning
Existing reasoning segmentation approaches typically fine-tune multimodal large language models (MLLMs) using image-text pairs and corresponding mask labels. However, they exhibit limited generalization to out-of-distribution scenarios without an explicit reasoning process. Although recent efforts leverage reinforcement learning through group-relative policy optimization (GRPO) to enhance reasoning ability, they often suffer from overthinking - producing uniformly verbose reasoning chains irrespective of task complexity. This results in elevated computational costs and limited control over reasoning quality. To address this problem, we propose PixelThink, a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty to regulate reasoning generation within a reinforcement learning paradigm. The model learns to compress reasoning length in accordance with scene complexity and predictive confidence. To support comprehensive evaluation, we introduce ReasonSeg-Diff, an extended benchmark with annotated reasoning references and difficulty scores, along with a suite of metrics designed to assess segmentation accuracy, reasoning quality, and efficiency jointly. Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance. Our work contributes novel perspectives towards efficient and interpretable multimodal understanding. The code and model will be publicly available.
Faithful Reasoning Using Large Language Models
Although contemporary large language models (LMs) demonstrate impressive question-answering capabilities, their answers are typically the product of a single call to the model. This entails an unwelcome degree of opacity and compromises performance, especially on problems that are inherently multi-step. To address these limitations, we show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem. Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs, one for selection and one for inference, to produce a valid reasoning trace. Our method carries out a beam search through the space of reasoning traces to improve reasoning quality. We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy, and generates humanly interpretable reasoning traces whose validity can be checked by the user.
AdaptThink: Reasoning Models Can Learn When to Think
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.
Efficient Inference for Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in complex task-solving. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from performance and efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant fieldhttps://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs.
Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps. While prompt-based methods like Chain-of-Thought (CoT) can improve LLM reasoning at inference time, optimizing reasoning capabilities during training remains challenging. We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution and optimizes it via variational approaches. LaTRO enables LLMs to concurrently improve both their reasoning process and ability to evaluate reasoning quality, without requiring external feedback or reward models. We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures. On GSM8K, LaTRO improves zero-shot accuracy by an average of 12.5% over base models and 9.6% over supervised fine-tuning across Phi-3.5-mini, Mistral-7B, and Llama-3.1-8B. Our findings suggest that pre-trained LLMs possess latent reasoning capabilities that can be unlocked and enhanced through our proposed optimization approach in a self-improvement manner. The code of LaTRO is available at https://github.com/SalesforceAIResearch/LaTRO.
AdaCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Chain-of-Thought
Large language models (LLMs) have shown impressive multilingual capabilities through pretraining on diverse corpora. While these models show strong reasoning abilities, their performance varies significantly across languages due to uneven training data distribution. Existing approaches using machine translation, and extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaCoT (Adaptive Chain-of-Thought), a framework that enhances multilingual reasoning by dynamically routing thought processes through intermediary "thinking languages" before generating target-language responses. AdaCoT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.
Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications
The proliferation of Large Language Models (LLMs) in medicine has enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning, a cornerstone of clinical practice. This has catalyzed a shift from single-step answer generation to the development of LLMs explicitly designed for medical reasoning. This paper provides the first systematic review of this emerging field. We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies (e.g., supervised fine-tuning, reinforcement learning) and test-time mechanisms (e.g., prompt engineering, multi-agent systems). We analyze how these techniques are applied across different data modalities (text, image, code) and in key clinical applications such as diagnosis, education, and treatment planning. Furthermore, we survey the evolution of evaluation benchmarks from simple accuracy metrics to sophisticated assessments of reasoning quality and visual interpretability. Based on an analysis of 60 seminal studies from 2022-2025, we conclude by identifying critical challenges, including the faithfulness-plausibility gap and the need for native multimodal reasoning, and outlining future directions toward building efficient, robust, and sociotechnically responsible medical AI.
TAR-TVG: Enhancing VLMs with Timestamp Anchor-Constrained Reasoning for Temporal Video Grounding
Temporal Video Grounding (TVG) aims to precisely localize video segments corresponding to natural language queries, which is a critical capability for long-form video understanding. Although existing reinforcement learning approaches encourage models to generate reasoning chains before predictions, they fail to explicitly constrain the reasoning process to ensure the quality of the final temporal predictions. To address this limitation, we propose Timestamp Anchor-constrained Reasoning for Temporal Video Grounding (TAR-TVG), a novel framework that introduces timestamp anchors within the reasoning process to enforce explicit supervision to the thought content. These anchors serve as intermediate verification points. More importantly, we require each reasoning step to produce increasingly accurate temporal estimations, thereby ensuring that the reasoning process contributes meaningfully to the final prediction. To address the challenge of low-probability anchor generation in models (e.g., Qwen2.5-VL-3B), we develop an efficient self-distillation training strategy: (1) initial GRPO training to collect 30K high-quality reasoning traces containing multiple timestamp anchors, (2) supervised fine-tuning (SFT) on distilled data, and (3) final GRPO optimization on the SFT-enhanced model. This three-stage training strategy enables robust anchor generation while maintaining reasoning quality. Experiments show that our model achieves state-of-the-art performance while producing interpretable, verifiable reasoning chains with progressively refined temporal estimations.
LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
Reasoning is a fundamental capability for solving complex multi-step problems, particularly in visual contexts where sequential step-wise understanding is essential. Existing approaches lack a comprehensive framework for evaluating visual reasoning and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing step-by-step visual reasoning in large language models (LMMs) through three key contributions. First, we introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks. The benchmark presents a diverse set of challenges with eight different categories ranging from complex visual perception to scientific reasoning with over 4k reasoning steps in total, enabling robust evaluation of LLMs' abilities to perform accurate and interpretable visual reasoning across multiple steps. Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps, emphasizing both correctness and logical coherence. The proposed metric offers deeper insights into reasoning performance compared to traditional end-task accuracy metrics. Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach, where tasks are progressively organized to facilitate incremental skill acquisition and problem-solving. The proposed LlamaV-o1 is designed for multi-step reasoning and learns step-by-step through a structured training paradigm. Extensive experiments show that our LlamaV-o1 outperforms existing open-source models and performs favorably against close-source proprietary models. Compared to the recent Llava-CoT, our LlamaV-o1 achieves an average score of 67.3 with an absolute gain of 3.8\% across six benchmarks while being 5 times faster during inference scaling. Our benchmark, model, and code are publicly available.
Which Heads Matter for Reasoning? RL-Guided KV Cache Compression
Reasoning large language models exhibit complex reasoning behaviors through the extended chain-of-thought generation, creating unprecedented Key-Value (KV) cache overhead during the decoding phase. Existing KV cache compression methods underperform on reasoning models: token-dropping methods break reasoning integrity by discarding critical information, while head-reallocating methods mistakenly compress reasoning-critical heads since they are designed for retrieval tasks, resulting in significant performance degradation as compression rates increase. We hypothesize that KV heads exhibit functional heterogeneity in reasoning models-some heads are critical for chain-of-thought consistency while others are compressible. To validate and exploit this insight, we propose RLKV, a novel reasoning-critical head identification framework, which uses reinforcement learning to directly optimize the relationship between each head's cache usage and reasoning quality. As RLKV produces rewards from actual generated samples during training, it naturally identifies heads relevant to reasoning behaviors. We then allocate full KV cache to these heads while applying compressed constant KV cache to others for efficient inference. Our experiments reveal that only a small fraction of attention heads is essential for reasoning, enabling our KV compression approach to outperform baseline methods while achieving 20-50% cache reduction with near lossless performance compared to uncompressed results.
Med-PRM: Medical Reasoning Models with Stepwise, Guideline-verified Process Rewards
Large language models have shown promise in clinical decision making, but current approaches struggle to localize and correct errors at specific steps of the reasoning process. This limitation is critical in medicine, where identifying and addressing reasoning errors is essential for accurate diagnosis and effective patient care. We introduce Med-PRM, a process reward modeling framework that leverages retrieval-augmented generation to verify each reasoning step against established medical knowledge bases. By verifying intermediate reasoning steps with evidence retrieved from clinical guidelines and literature, our model can precisely assess the reasoning quality in a fine-grained manner. Evaluations on five medical QA benchmarks and two open-ended diagnostic tasks demonstrate that Med-PRM achieves state-of-the-art performance, with improving the performance of base models by up to 13.50% using Med-PRM. Moreover, we demonstrate the generality of Med-PRM by integrating it in a plug-and-play fashion with strong policy models such as Meerkat, achieving over 80\% accuracy on MedQA for the first time using small-scale models of 8 billion parameters. Our code and data are available at: https://med-prm.github.io/
Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective
Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step reasoning tasks. However, alongside these successes, a more deceptive form of model error has emerged--Reasoning Hallucination--where logically coherent but factually incorrect reasoning traces lead to persuasive yet faulty conclusions. Unlike traditional hallucinations, these errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful. In this work, we investigate reasoning hallucinations from a mechanistic perspective. We propose the Reasoning Score, which quantifies the depth of reasoning by measuring the divergence between logits obtained from projecting late layers of LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching from genuine deep reasoning. Using this score, we conduct an in-depth analysis on the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps. These insights motivate our Reasoning Hallucination Detection (RHD) framework, which achieves state-of-the-art performance across multiple domains. To mitigate reasoning hallucinations, we further introduce GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping. Our theoretical analysis establishes stronger generalization guarantees, and experiments demonstrate improved reasoning quality and reduced hallucination rates.
SUPERChem: A Multimodal Reasoning Benchmark in Chemistry
Current benchmarks for evaluating the chemical reasoning capabilities of Large Language Models (LLMs) are limited by oversimplified tasks, lack of process-level evaluation, and misalignment with expert-level chemistry skills. To address these issues, we introduce SUPERChem, a benchmark of 500 expert-curated reasoning-intensive chemistry problems, covering diverse subfields and provided in both multimodal and text-only formats. Original content and an iterative curation pipeline eliminate flawed items and mitigate data contamination. Each problem is paired with an expert-authored solution path, enabling Reasoning Path Fidelity (RPF) scoring to evaluate reasoning quality beyond final-answer accuracy. Evaluations against a human baseline of 40.3% accuracy show that even the best-performing model, GPT-5 (High), reaches only 38.5%, followed closely by Gemini 2.5 Pro (37.9%) and DeepSeek-V3.1-Think (37.3%). SUPERChem elicits multi-step, multimodal reasoning, reveals model-dependent effects of visual information, and distinguishes high-fidelity reasoners from heuristic ones. By providing a challenging benchmark and a reliable evaluation framework, SUPERChem aims to facilitate the advancement of LLMs toward expert-level chemical intelligence. The dataset of the benchmark is available at https://huggingface.co/datasets/ZehuaZhao/SUPERChem.
A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.
Improve Vision Language Model Chain-of-thought Reasoning
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.
DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval
Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline.
Apriel-H1: Towards Efficient Enterprise Reasoning Models
Large Language Models (LLMs) achieve remarkable reasoning capabilities through transformer architectures with attention mechanisms. However, transformers suffer from quadratic time and memory complexity in the attention module (MHA) and require caching key-value states during inference, which severely limits throughput and scalability. High inference throughput is critical for agentic tasks, long-context reasoning, efficient deployment under high request loads, and more efficient test-time compute scaling. State Space Models (SSMs) such as Mamba offer a promising alternative with linear inference complexity and a constant memory footprint via recurrent computation with fixed-size hidden states. In this technical report we introduce the Apriel-H1 family of hybrid LLMs that combine transformer attention and SSM sequence mixers for efficient reasoning at 15B model size. These models are obtained through incremental distillation from a pretrained reasoning transformer, Apriel-Nemotron-15B-Thinker, progressively replacing less critical attention layers with linear Mamba blocks. We release multiple post-distillation variants of Apriel-H1-15B-Thinker with different SSM-to-MHA ratios and analyse how reasoning performance degrades as more Mamba layers replace MHA. Additionally, we release a 30/50 hybrid variant of Apriel-H1, further fine-tuned on a supervised dataset of reasoning traces, achieving over 2x higher inference throughput when deployed in the production-ready vLLM environment, with minimal degradation in reasoning performance. This shows that distilled hybrid SSM-Transformer architectures can deliver substantial efficiency gains over the pretrained transformer equivalent without substantially compromising the reasoning quality.
More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
Adaptive Termination for Multi-round Parallel Reasoning: An Universal Semantic Entropy-Guided Framework
Recent advances in large language models (LLMs) have accelerated progress toward artificial general intelligence, with inference-time scaling emerging as a key technique. Contemporary approaches leverage either sequential reasoning (iteratively extending chains of thought) or parallel reasoning (generating multiple solutions simultaneously) to scale inference. However, both paradigms face fundamental limitations: sequential scaling typically relies on arbitrary token budgets for termination, leading to inefficiency or premature cutoff; while parallel scaling often lacks coordination among parallel branches and requires intrusive fine-tuning to perform effectively. In light of these challenges, we aim to design a flexible test-time collaborative inference framework that exploits the complementary strengths of both sequential and parallel reasoning paradigms. Towards this goal, the core challenge lies in developing an efficient and accurate intrinsic quality metric to assess model responses during collaborative inference, enabling dynamic control and early termination of the reasoning trace. To address this challenge, we introduce semantic entropy (SE), which quantifies the semantic diversity of parallel model responses and serves as a robust indicator of reasoning quality due to its strong negative correlation with accuracy...
Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...
Revisiting the Uniform Information Density Hypothesis in LLM Reasoning Traces
The Uniform Information Density (UID) hypothesis suggests that effective communication maintains a stable flow of information. In this work, we revisit this principle in the context of large language model (LLM) reasoning traces, asking whether step-level uniformity reflects reasoning quality. To this end, we propose an entropy-based stepwise information density metric and introduce two complementary measures of uniformity, local and global uniformity scores. Across the experiments on six different reasoning benchmarks, we find that step-level uniformity not only provides a strong theoretical lens but also yields practical performance benefits; for example, selecting reasoning traces with more uniform information density at the step-level improves accuracy by 10-32\% relative gains over baselines at AIME2025. Our analysis further reveals that correct reasoning traces tend to avoid sharp information density spikes, while incorrect traces exhibit irregular information bursts. These results demonstrate that UID-inspired information density measures outperform alternative internal signals as predictors of reasoning quality. Results highlight the uniformity of the information density as a robust diagnostic and selection criterion for building more reliable and accurate reasoning systems.
SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.
Lost at the Beginning of Reasoning
Recent advancements in large language models (LLMs) have significantly advanced complex reasoning capabilities, particularly through extended chain-of-thought (CoT) reasoning that incorporates mechanisms such as backtracking, self-reflection and self-correction. Despite these developments, the self-correction abilities of LLMs during long CoT reasoning remain underexplored. And recent findings on overthinking suggest that such models often engage in unnecessarily redundant reasoning. In this work, we empirically show that the first reasoning step exerts a disproportionately large influence on the final prediction - errors introduced at this stage can substantially degrade subsequent reasoning quality. This phenomenon is consistently observed across two state-of-the-art open-source reasoning model families: DeepSeek-R1 and Qwen3. To address this, we propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps while discarding suboptimal ones, achieving up to a 70% reduction in inference cost without sacrificing accuracy. Finally, we introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities, offering a foundation for future research on robust reasoning in LLMs.
PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking
PRefLexOR (Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning) combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach through iterative reasoning improvements. We propose a recursive learning approach that engages the model in multi-step reasoning, revisiting, and refining intermediate steps before producing a final output in training and inference phases. Through multiple training stages, the model first learns to align its reasoning with accurate decision paths by optimizing the log odds between preferred and non-preferred responses. During this process, PRefLexOR builds a dynamic knowledge graph by generating questions from random text chunks and retrieval-augmentation to contextualize relevant details from the entire training corpus. In the second stage, preference optimization enhances model performance by using rejection sampling to fine-tune reasoning quality by continually producing in-situ training data while masking the reasoning steps. Recursive optimization within a thinking token framework introduces iterative feedback loops, where the model refines reasoning, achieving deeper coherence, consistency, and adaptability. Implemented in small language models with only 3 billion parameters, we should that even tiny models can iteratively teach themselves to reason with greater depth and reflectivity. Our implementation is straightforward and can be incorporated into any existing pretrained LLM. We focus our examples on applications in biological materials science and demonstrate the method in a variety of case studies that range from in-domain to cross-domain applications. Using reasoning strategies that include thinking and reflection modalities we build a multi-agent recursive self-improving inference approach to successively improve responses via repeated sampling in inference time.
Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
Breaking Reward Collapse: Adaptive Reinforcement for Open-ended Medical Reasoning with Enhanced Semantic Discrimination
Reinforcement learning (RL) with rule-based rewards has demonstrated strong potential in enhancing the reasoning and generalization capabilities of vision-language models (VLMs) and large language models (LLMs), while reducing computational overhead. However, its application in medical imaging remains underexplored. Existing reinforcement fine-tuning (RFT) approaches in this domain primarily target closed-ended visual question answering (VQA), limiting their applicability to real-world clinical reasoning. In contrast, open-ended medical VQA better reflects clinical practice but has received limited attention. While some efforts have sought to unify both formats via semantically guided RL, we observe that model-based semantic rewards often suffer from reward collapse, where responses with significant semantic differences receive similar scores. To address this, we propose ARMed (Adaptive Reinforcement for Medical Reasoning), a novel RL framework for open-ended medical VQA. ARMed first incorporates domain knowledge through supervised fine-tuning (SFT) on chain-of-thought data, then applies reinforcement learning with textual correctness and adaptive semantic rewards to enhance reasoning quality. We evaluate ARMed on six challenging medical VQA benchmarks. Results show that ARMed consistently boosts both accuracy and generalization, achieving a 32.64% improvement on in-domain tasks and an 11.65% gain on out-of-domain benchmarks. These results highlight the critical role of reward discriminability in medical RL and the promise of semantically guided rewards for enabling robust and clinically meaningful multimodal reasoning.
Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time
Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.
Gazal-R1: Achieving State-of-the-Art Medical Reasoning with Parameter-Efficient Two-Stage Training
We present Gazal-R1, a 32-billion-parameter language model that achieves state-of-the-art performance in medical reasoning while providing transparent, step-by-step explanations for clinical decision-making. Built upon Qwen3 32B, our model demonstrates that strategic training can enable mid-sized models to outperform significantly larger counterparts in specialized domains. We developed a novel two-stage training pipeline: first, supervised fine-tuning on a carefully curated dataset of 107,033 synthetic medical reasoning examples that teaches structured clinical thinking, enhanced by advanced parameter-efficient techniques including Weight-Decomposed Low-Rank Adaptation (DoRA) and Rank-Stabilized LoRA (rsLoRA); second, reinforcement learning using Group Relative Policy Optimization (GRPO) with a sophisticated multi-component reward system that refines accuracy, format adherence, and reasoning quality. Gazal-R1 achieves exceptional performance across medical benchmarks, scoring 87.1% on MedQA, 81.6% on MMLU Pro (Medical), and 79.6% on PubMedQA, surpassing models up to 12x larger. Beyond its strong empirical results, this work provides detailed insights into the challenges of training reasoning-capable models in specialized domains, including issues with reward hacking, training instability, and the fundamental tension between factual recall and detailed reasoning. Our methodology offers a reproducible framework for developing high-capability, domain-specific language models that balance performance, efficiency, and explainability.
MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis
Multimodal large language models (MLLMs) require continual instruction tuning during their post-training phase to adapt to the dynamic real-world demands. However, the absence of rigorous and systematic benchmarks has hindered progress in this area. To bridge this gap, we introduce MLLM-CTBench, a dataset curating seven challenging tasks from six diverse domains with three contributions. First,to enable fine-grained analysis of continual learning ability, we introduce multidimensional evaluation metrics, which combines final answer accuracy with Chain-of-Thought (CoT) reasoning quality assessment through a carefully trained MLLM evaluator. Then, we conduct a comprehensive evaluation of continual learning algorithms, systematically assessing eight algorithms from four major categories to provide actionable insights for algorithm design and adoption. Finally ,we evaluate the efficacy of Reinforcement Fine-tuning (RFT) versus Supervised Fine-tuning (SFT) in maintaining model performance across sequential tasks during continual instruction tuning. Our experiments demonstrate that reasoning processes in MLLMs exhibit greater resilience than final outputs to forgetting during continual learning, aligning with cognitive theories of hierarchical forgetting. We further show that both model capability and task sequence significantly influence continual learning outcomes, with stronger baseline models exhibiting greater resistance to forgetting. Notably, properly regularized RFT emerges as a more robust approach than SFT for maintaining performance across tasks.One of the key contributing factors is KL-divergence regularization, without which RFT leads to even worse forgetting than SFT on old tasks though may perform better on new tasks.
Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Existing methods for vision-language task planning excel in short-horizon tasks but often fall short in complex, long-horizon planning within dynamic environments. These challenges primarily arise from the difficulty of effectively training models to produce high-quality reasoning processes for long-horizon tasks. To address this, we propose Structured Preference Optimization (SPO), which aims to enhance reasoning and action selection in long-horizon task planning through structured preference evaluation and optimized training strategies. Specifically, SPO introduces: 1) Preference-Based Scoring and Optimization, which systematically evaluates reasoning chains based on task relevance, visual grounding, and historical consistency; and 2) Curriculum-Guided Training, where the model progressively adapts from simple to complex tasks, improving its generalization ability in long-horizon scenarios and enhancing reasoning robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.
From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation
Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.
The Bidirectional Process Reward Model
Process Reward Models (PRMs) have emerged as a promising approach to enhance the reasoning quality of Large Language Models (LLMs) by assigning fine-grained scores to intermediate reasoning steps within a solution trajectory. However, existing PRMs predominantly adopt a unidirectional left-to-right (L2R) evaluation paradigm, which limits their ability to leverage global context, making it challenging to verify the consistency of earlier steps based on later ones. In light of these challenges, we propose a novel bidirectional evaluation paradigm, named Bidirectional Process Reward Model (BiPRM). BiPRM seamlessly incorporates a parallel right-to-left (R2L) evaluation stream alongside the conventional L2R flow, enabling later reasoning steps to help assess earlier ones in real time. Notably, the built-in R2L evaluation is implemented solely through prompt modifications that reverse the original reasoning trajectory, without any additional parameters or inference latency introduced. This ensures BiPRM remains both efficient and broadly compatible with existing PRM studies. We conduct extensive experiments on two mathematical reasoning benchmarks using samples generated by three different policy models. Our method, BiPRM, is evaluated across three backbones and three distinct PRM objectives. Across all settings, BiPRM consistently outperforms unidirectional baselines, achieving up to a 31.9% improvement in stepwise reward evaluation. Generally, our results highlight BiPRM's effectiveness, robustness, and general applicability, offering a promising new direction for process-based reward modeling.
Latent Collaboration in Multi-Agent Systems
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.
Reinforcement Learning is all You Need
Inspired by the success of DeepSeek R1 in reasoning via reinforcement learning without human feedback, we train a 3B language model using the Countdown Game with pure reinforcement learning. Our model outperforms baselines on four of five benchmarks, demonstrating improved generalization beyond its training data. Notably, response length does not correlate with reasoning quality, and while "aha moments" emerge, they do not always yield correct answers. These findings highlight the potential of RL-only training for reasoning enhancement and suggest future work on refining reward structures to bridge emergent insights with accuracy.
Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment
While recent advancements in aligning Large Language Models (LLMs) with recommendation tasks have shown great potential and promising performance overall, these aligned recommendation LLMs still face challenges in complex scenarios. This is primarily due to the current alignment approach focusing on optimizing LLMs to generate user feedback directly, without incorporating deliberation. To overcome this limitation and develop more reliable LLMs for recommendations, we propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal. We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment, designed to enhance reasoning capabilities by utilizing verbalized user feedback in a step-wise manner to tackle this task. The framework employs collaborative step-wise experts and tailored training strategies for each expert. Experimental results across three real-world datasets demonstrate the rationality of the deliberative task formulation and the superior performance of the proposed framework in improving both prediction accuracy and reasoning quality.
MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
It's Not You, It's Clipping: A Soft Trust-Region via Probability Smoothing for LLM RL
Training large language models (LLMs) with reinforcement learning (RL) methods such as PPO and GRPO commonly relies on ratio clipping to stabilise updates. While effective at preventing instability, clipping discards information and introduces gradient discontinuities. We propose Probability Smoothing Policy Optimisation (PSPO), which smooths the current policy's probabilities toward the old (behaviour) policy before computing the importance ratio, analogous to label smoothing. Unlike clipping, PSPO preserves gradient signal, while interpolation toward the old policy creates a soft trust region that discourages large, destabilising updates, with formal guarantees. We instantiate PSPO within GRPO (GR-PSPO) and fine-tune Qwen2.5-0.5B and Qwen2.5-1.5B on GSM8K, evaluating on GSM8K test and the cross-dataset generalisation on SVAMP, ASDiv, and MATH-500. Relative to unclipped GRPO (single iteration; no data reuse, ratio always = 1), GR-PSPO achieves similar performance but improves the reasoning leading to clearer and more concise responses which are more logical. Compared to clipped GRPO, GR-PSPO substantially improves performance both the 0.5B and 1.5B models, with a boost of over 20% on GSM8K (39.7% vs. 17.6% for 0.5B, 59.4% vs. 37.8% for 1.5B).
RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
OpenREAD: Reinforced Open-Ended Reasoing for End-to-End Autonomous Driving with LLM-as-Critic
Recently, two-stage fine-tuning strategies, e.g., acquiring essential driving knowledge through supervised fine-tuning (SFT) and further enhancing decision-making and planning via reinforcement fine-tuning (RFT), have shown strong potential in advancing the knowledge-driven autonomous driving (AD) paradigm. However, the learning nature of SFT still limits the generalization of reasoning, thereby constraining the full potential of driving performance. Meanwhile, current RFT approaches are primarily applied to downstream tasks, since scene understanding is an open-ended problem where corresponding rewards are difficult to quantify. To address these limitations, we propose OpenREAD, an OPEN-ended REasoning reinforced vision-language model (VLM)-based autonomous driving (AD) framework that enables end-to-end RFT across the full spectrum from high-level reasoning to low-level trajectory planning. Specifically, we begin by constructing large-scale Chain-of-Thought (CoT) annotations on open-source driving-related knowledge datasets, and employ the powerful Qwen3 large language model (LLM) as the critic in RFT to quantify reasoning quality for open-ended questions during reward modeling. Extensive experiments confirm that joint end-to-end RFT yields substantial improvements in both upstream and downstream tasks, enabling OpenREAD to achieve state-of-the-art performance on reasoning and planning benchmarks.
Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training
Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over 4% compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.
Self-Taught Agentic Long Context Understanding
Answering complex, long-context questions remains a major challenge for large language models (LLMs) as it requires effective question clarifications and context retrieval. We propose Agentic Long-Context Understanding (AgenticLU), a framework designed to enhance an LLM's understanding of such queries by integrating targeted self-clarification with contextual grounding within an agentic workflow. At the core of AgenticLU is Chain-of-Clarifications (CoC), where models refine their understanding through self-generated clarification questions and corresponding contextual groundings. By scaling inference as a tree search where each node represents a CoC step, we achieve 97.8% answer recall on NarrativeQA with a search depth of up to three and a branching factor of eight. To amortize the high cost of this search process to training, we leverage the preference pairs for each step obtained by the CoC workflow and perform two-stage model finetuning: (1) supervised finetuning to learn effective decomposition strategies, and (2) direct preference optimization to enhance reasoning quality. This enables AgenticLU models to generate clarifications and retrieve relevant context effectively and efficiently in a single inference pass. Extensive experiments across seven long-context tasks demonstrate that AgenticLU significantly outperforms state-of-the-art prompting methods and specialized long-context LLMs, achieving robust multi-hop reasoning while sustaining consistent performance as context length grows.
MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2% on the Single-Hop subset and +0.4% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8% on the Unseen-Q subset, +8.2% on the Unseen-E subset, and +8.1% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
Extending Test-Time Scaling: A 3D Perspective with Context, Batch, and Turn
Reasoning reinforcement learning (RL) has recently revealed a new scaling effect: test-time scaling. Thinking models such as R1 and o1 improve their reasoning accuracy at test time as the length of the reasoning context increases. However, compared with training-time scaling, test-time scaling is fundamentally limited by the limited context length of base models, which remains orders of magnitude smaller than the amount of tokens consumed during training. We revisit test-time enhancement techniques through the lens of scaling effect and introduce a unified framework of multi-dimensional test-time scaling to extend the capacity of test-time reasoning. Beyond conventional context-length scaling, we consider two additional dimensions: batch scaling, where accuracy improves with parallel sampling, and turn scaling, where iterative self-refinement enhances reasoning quality. Building on this perspective, we propose 3D test-time scaling, which integrates context, batch, and turn scaling. We show that: (1) each dimension demonstrates a test-time scaling effect, but with a bounded capacity; (2) combining all three dimensions substantially improves the reasoning performance of challenging testbeds, including IOI, IMO, and CPHO, and further benefits from human preference feedback; and (3) the human-in-the-loop framework naturally extends to a more open-ended domain, i.e., embodied learning, which enables the design of humanoid control behaviors.
Precise Legal Sentence Boundary Detection for Retrieval at Scale: NUPunkt and CharBoundary
We present NUPunkt and CharBoundary, two sentence boundary detection libraries optimized for high-precision, high-throughput processing of legal text in large-scale applications such as due diligence, e-discovery, and legal research. These libraries address the critical challenges posed by legal documents containing specialized citations, abbreviations, and complex sentence structures that confound general-purpose sentence boundary detectors. Our experimental evaluation on five diverse legal datasets comprising over 25,000 documents and 197,000 annotated sentence boundaries demonstrates that NUPunkt achieves 91.1% precision while processing 10 million characters per second with modest memory requirements (432 MB). CharBoundary models offer balanced and adjustable precision-recall tradeoffs, with the large model achieving the highest F1 score (0.782) among all tested methods. Notably, NUPunkt provides a 29-32% precision improvement over general-purpose tools while maintaining exceptional throughput, processing multi-million document collections in minutes rather than hours. Both libraries run efficiently on standard CPU hardware without requiring specialized accelerators. NUPunkt is implemented in pure Python with zero external dependencies, while CharBoundary relies only on scikit-learn and optional ONNX runtime integration for optimized performance. Both libraries are available under the MIT license, can be installed via PyPI, and can be interactively tested at https://sentences.aleainstitute.ai/. These libraries address critical precision issues in retrieval-augmented generation systems by preserving coherent legal concepts across sentences, where each percentage improvement in precision yields exponentially greater reductions in context fragmentation, creating cascading benefits throughout retrieval pipelines and significantly enhancing downstream reasoning quality.
Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose PathoCLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both PathoCLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
VisualQuality-R1: Reasoning-Induced Image Quality Assessment via Reinforcement Learning to Rank
DeepSeek-R1 has demonstrated remarkable effectiveness in incentivizing reasoning and generalization capabilities of large language models (LLMs) through reinforcement learning. Nevertheless, the potential of reasoning-induced computational modeling has not been thoroughly explored in the context of image quality assessment (IQA), a task critically dependent on visual reasoning. In this paper, we introduce VisualQuality-R1, a reasoning-induced no-reference IQA (NR-IQA) model, and we train it with reinforcement learning to rank, a learning algorithm tailored to the intrinsically relative nature of visual quality. Specifically, for a pair of images, we employ group relative policy optimization to generate multiple quality scores for each image. These estimates are then used to compute comparative probabilities of one image having higher quality than the other under the Thurstone model. Rewards for each quality estimate are defined using continuous fidelity measures rather than discretized binary labels. Extensive experiments show that the proposed VisualQuality-R1 consistently outperforms discriminative deep learning-based NR-IQA models as well as a recent reasoning-induced quality regression method. Moreover, VisualQuality-R1 is capable of generating contextually rich, human-aligned quality descriptions, and supports multi-dataset training without requiring perceptual scale realignment. These features make VisualQuality-R1 especially well-suited for reliably measuring progress in a wide range of image processing tasks like super-resolution and image generation.
Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
Recent advancements in large language models (LLMs), such as DeepSeek-R1 and OpenAI-o1, have demonstrated the significant effectiveness of test-time scaling, achieving substantial performance gains across various benchmarks. These advanced models utilize deliberate "thinking" steps to systematically enhance answer quality. In this paper, we propose leveraging these high-quality outputs generated by reasoning-intensive models to improve less computationally demanding, non-reasoning models. We explore and compare methodologies for utilizing the answers produced by reasoning models to train and improve non-reasoning models. Through straightforward Supervised Fine-Tuning (SFT) experiments on established benchmarks, we demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
Audio-Reasoner: Improving Reasoning Capability in Large Audio Language Models
Recent advancements in multimodal reasoning have largely overlooked the audio modality. We introduce Audio-Reasoner, a large-scale audio language model for deep reasoning in audio tasks. We meticulously curated a large-scale and diverse multi-task audio dataset with simple annotations. Then, we leverage closed-source models to conduct secondary labeling, QA generation, along with structured COT process. These datasets together form a high-quality reasoning dataset with 1.2 million reasoning-rich samples, which we name CoTA. Following inference scaling principles, we train Audio-Reasoner on CoTA, enabling it to achieve great logical capabilities in audio reasoning. Experiments show state-of-the-art performance across key benchmarks, including MMAU-mini (+25.42%), AIR-Bench chat/foundation(+14.57%/+10.13%), and MELD (+8.01%). Our findings stress the core of structured CoT training in advancing audio reasoning.
Mol-R1: Towards Explicit Long-CoT Reasoning in Molecule Discovery
Large language models (LLMs), especially Explicit Long Chain-of-Thought (CoT) reasoning models like DeepSeek-R1 and QWQ, have demonstrated powerful reasoning capabilities, achieving impressive performance in commonsense reasoning and mathematical inference. Despite their effectiveness, Long-CoT reasoning models are often criticized for their limited ability and low efficiency in knowledge-intensive domains such as molecule discovery. Success in this field requires a precise understanding of domain knowledge, including molecular structures and chemical principles, which is challenging due to the inherent complexity of molecular data and the scarcity of high-quality expert annotations. To bridge this gap, we introduce Mol-R1, a novel framework designed to improve explainability and reasoning performance of R1-like Explicit Long-CoT reasoning LLMs in text-based molecule generation. Our approach begins with a high-quality reasoning dataset curated through Prior Regulation via In-context Distillation (PRID), a dedicated distillation strategy to effectively generate paired reasoning traces guided by prior regulations. Building upon this, we introduce MoIA, Molecular Iterative Adaptation, a sophisticated training strategy that iteratively combines Supervised Fine-tuning (SFT) with Reinforced Policy Optimization (RPO), tailored to boost the reasoning performance of R1-like reasoning models for molecule discovery. Finally, we examine the performance of Mol-R1 in the text-based molecule reasoning generation task, showing superior performance against existing baselines.
From Harm to Help: Turning Reasoning In-Context Demos into Assets for Reasoning LMs
Recent reasoning LLMs (RLMs), especially those trained with verifier-based reinforcement learning, often perform worse with few-shot CoT than with direct answering. We revisit this paradox using high-quality reasoning traces from DeepSeek-R1 as demonstrations and find that adding more exemplars consistently degrades accuracy, even when demonstrations are optimal. A detailed analysis reveals two mechanisms behind this decline: (i) semantic misguidance, where high textual similarity leads the model to treat the target as the same as the exemplar and to copy intermediate steps verbatim; and (ii) strategy transfer failure, where the model struggles to extract useful reasoning strategies and apply them to target questions. Guided by these, we introduce Insight-to-Solve (I2S), a sequential test-time procedure that turns demonstrations into explicit, reusable insights and derives a target-specific reasoning trace; optionally, the reasoning is self-refined for coherence and correctness (I2S+). Extensive experiments on diverse benchmarks show that I2S and I2S+ consistently outperform both direct answering and test-time scaling baselines across open- and closed-source models. Even for GPT models, our method helps: on AIME'25, GPT-4.1 rises by +14.0%, and o1-mini improves by +2.7% on AIME and +1.7% on GPQA, indicating that in-context demonstrations can be harnessed effectively via insight-refine-solve framework.
Self-Enhanced Reasoning Training: Activating Latent Reasoning in Small Models for Enhanced Reasoning Distillation
The rapid advancement of large language models (LLMs) has significantly enhanced their reasoning abilities, enabling increasingly complex tasks. However, these capabilities often diminish in smaller, more computationally efficient models like GPT-2. Recent research shows that reasoning distillation can help small models acquire reasoning capabilities, but most existing methods focus primarily on improving teacher-generated reasoning paths. Our observations reveal that small models can generate high-quality reasoning paths during sampling, even without chain-of-thought prompting, though these paths are often latent due to their low probability under standard decoding strategies. To address this, we propose Self-Enhanced Reasoning Training (SERT), which activates and leverages latent reasoning capabilities in small models through self-training on filtered, self-generated reasoning paths under zero-shot conditions. Experiments using OpenAI's GPT-3.5 as the teacher model and GPT-2 models as the student models demonstrate that SERT enhances the reasoning abilities of small models, improving their performance in reasoning distillation.
RM-R1: Reward Modeling as Reasoning
Reward modeling is essential for aligning large language models (LLMs) with human preferences, especially through reinforcement learning from human feedback (RLHF). To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. However, existing RMs either produce opaque scalar scores or directly generate the prediction of a preferred answer, making them struggle to integrate natural language critiques, thus lacking interpretability. Inspired by recent advances of long chain-of-thought (CoT) on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RM's interpretability and performance. In this work, we introduce a new class of generative reward models -- Reasoning Reward Models (ReasRMs) -- which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. The training consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. RM-R1 improves LLM rollouts by self-generating reasoning traces or chat-specific rubrics and evaluating candidate responses against them. Empirically, our models achieve state-of-the-art or near state-of-the-art performance of generative RMs across multiple comprehensive reward model benchmarks, outperforming much larger open-weight models (e.g., Llama3.1-405B) and proprietary ones (e.g., GPT-4o) by up to 13.8%. Beyond final performance, we perform thorough empirical analysis to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six ReasRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.
SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers
Large Language Models (LLMs) have achieved human-level proficiency across diverse tasks, but their ability to perform rigorous mathematical problem solving remains an open challenge. In this work, we investigate a fundamental yet computationally intractable problem: determining whether a given multivariate polynomial is nonnegative. This problem, closely related to Hilbert's Seventeenth Problem, plays a crucial role in global polynomial optimization and has applications in various fields. First, we introduce SoS-1K, a meticulously curated dataset of approximately 1,000 polynomials, along with expert-designed reasoning instructions based on five progressively challenging criteria. Evaluating multiple state-of-the-art LLMs, we find that without structured guidance, all models perform only slightly above the random guess baseline 50%. However, high-quality reasoning instructions significantly improve accuracy, boosting performance up to 81%. Furthermore, our 7B model, SoS-7B, fine-tuned on SoS-1K for just 4 hours, outperforms the 671B DeepSeek-V3 and GPT-4o-mini in accuracy while only requiring 1.8% and 5% of the computation time needed for letters, respectively. Our findings highlight the potential of LLMs to push the boundaries of mathematical reasoning and tackle NP-hard problems.
Flow-DPO: Improving LLM Mathematical Reasoning through Online Multi-Agent Learning
Mathematical reasoning is a crucial capability for Large Language Models (LLMs), yet generating detailed and accurate reasoning traces remains a significant challenge. This paper introduces a novel approach to produce high-quality reasoning traces for LLM fine-tuning using online learning Flows. Our method employs an incremental output production Flow, where component LLMs collaboratively construct solutions through iterative communication. We train the Flow using online Direct Preference Optimization (DPO) learning with rollouts, generating DPO pairs for each training example and updating models in real-time. We directly compare the quality of reasoning traces generated by our method with those produced through direct model inference, demonstrating the effectiveness of our approach in improving LLM performance in mathematical reasoning tasks.
EHR-R1: A Reasoning-Enhanced Foundational Language Model for Electronic Health Record Analysis
Electronic Health Records (EHRs) contain rich yet complex information, and their automated analysis is critical for clinical decision-making. Despite recent advances of large language models (LLMs) in clinical workflows, their ability to analyze EHRs remains limited due to narrow task coverage and lack of EHR-oriented reasoning capabilities. This paper aims to bridge the gap, specifically, we present EHR-Ins, a large-scale, comprehensive EHR reasoning instruction dataset, comprising 300k high-quality reasoning cases and 4M non-reasoning cases across 42 distinct EHR tasks. Its core innovation is a thinking-graph-driven framework that enables to generate high-quality reasoning data at scale. Based on it, we develop EHR-R1, a series of reasoning-enhanced LLMs with up to 72B parameters tailored for EHR analysis. Through a multi-stage training paradigm, including domain adaptation, reasoning enhancement, and reinforcement learning, EHR-R1 systematically acquires domain knowledge and diverse reasoning capabilities, enabling accurate and robust EHR analysis. Lastly, we introduce EHR-Bench, a new benchmark curated from MIMIC-IV, spanning 42 tasks, to comprehensively assess reasoning and prediction across EHR scenarios. In experiments, we show that the resulting EHR-R1 consistently outperforms state-of-the-art commercial and open-source LLMs (including DeepSeek-V3 and GPT-4o), surpassing GPT-4o by over 30 points on MIMIC-Bench and achieving a 10\% higher zero-shot AUROC on EHRSHOT. Collectively, EHR-Ins, EHR-R1, and EHR-Bench have significantly advanced the development for more reliable and clinically relevant EHR analysis.
Mind-Paced Speaking: A Dual-Brain Approach to Real-Time Reasoning in Spoken Language Models
Real-time Spoken Language Models (SLMs) struggle to leverage Chain-of-Thought (CoT) reasoning due to the prohibitive latency of generating the entire thought process sequentially. Enabling SLMs to think while speaking, similar to humans, is attracting increasing attention. We present, for the first time, Mind-Paced Speaking (MPS), a brain-inspired framework that enables high-fidelity, real-time reasoning. Similar to how humans utilize distinct brain regions for thinking and responding, we propose a novel dual-brain approach, employing a "Formulation Brain" for high-level reasoning to pace and guide a separate "Articulation Brain" for fluent speech generation. This division of labor eliminates mode-switching, preserving the integrity of the reasoning process. Experiments show that MPS significantly outperforms existing think-while-speaking methods and achieves reasoning performance comparable to models that pre-compute the full CoT before speaking, while drastically reducing latency. Under a zero-latency configuration, the proposed method achieves an accuracy of 92.8% on the mathematical reasoning task Spoken-MQA and attains a score of 82.5 on the speech conversation task URO-Bench. Our work effectively bridges the gap between high-quality reasoning and real-time interaction.
LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
In this paper, we present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples. We do this effectively by simply utilizing widely available algorithmic problems and their code solutions. First, we constructed diverse test samples input based on algorithmic questions and code solutions. Then, we designed different complex reasoning questions based on algorithmic problems and test samples. Finally, combining the intermediate variable outputs of the code solutions and the complex reasoning questions, we derived the reasoning process and the final answer. With this approach, we can construct a dataset that is sufficiently difficult (all models are ineffective), diverse (synthesized from 2,360 different algorithmic questions), and scalable (building different test samples and collecting more algorithmic questions). In addition, we obtain a high-quality reasoning process guided by the values of intermediate variables. As a result, our approach achieves significant improvements in multiple models for the BBH^{27}, GSM8K, HellSwag, Logicqa, Reclor, and RTE datasets, outperforming a wide range of existing reasoning datasets.
VRPRM: Process Reward Modeling via Visual Reasoning
Process Reward Model (PRM) is widely used in the post-training of Large Language Model (LLM) because it can perform fine-grained evaluation of the reasoning steps of generated content. However, most PRMs lack long-term reasoning and deep thinking capabilities. On the other hand, although a few works have tried to introduce Chain-of-Thought capability into PRMs, the annotation cost of CoT-PRM data is too expensive to play a stable role in various tasks. To address the above challenges, we propose VRPRM, a process reward model via visual reasoning, and design an efficient two-stage training strategy. Experimental results show that using only 3.6K CoT-PRM SFT data and 50K non-CoT PRM RL training data, VRPRM can surpass the non-thinking PRM with a total data volume of 400K and achieved a relative performance improvement of up to 118\% over the base model in the BoN experiment. This result confirms that the proposed combined training strategy can achieve higher quality reasoning capabilities at a lower data annotation cost, thus providing a new paradigm for PRM training with more efficient data utilization.
RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library
The advancement of reasoning capabilities in Large Language Models (LLMs) requires substantial amounts of high-quality reasoning data, particularly in mathematics. Existing data synthesis methods, such as data augmentation from annotated training sets or direct question generation based on relevant knowledge points and documents, have expanded datasets but face challenges in mastering the inner logic of the problem during generation and ensuring the verifiability of the solutions. To address these issues, we propose RV-Syn, a novel Rational and Verifiable mathematical Synthesis approach. RV-Syn constructs a structured mathematical operation function library based on initial seed problems and generates computational graphs as solutions by combining Python-formatted functions from this library. These graphs are then back-translated into complex problems. Based on the constructed computation graph, we achieve solution-guided logic-aware problem generation. Furthermore, the executability of the computational graph ensures the verifiability of the solving process. Experimental results show that RV-Syn surpasses existing synthesis methods, including those involving human-generated problems, achieving greater efficient data scaling. This approach provides a scalable framework for generating high-quality reasoning datasets.
Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers
This paper introduces rStar, a self-play mutual reasoning approach that significantly improves reasoning capabilities of small language models (SLMs) without fine-tuning or superior models. rStar decouples reasoning into a self-play mutual generation-discrimination process. First, a target SLM augments the Monte Carlo Tree Search (MCTS) with a rich set of human-like reasoning actions to construct higher quality reasoning trajectories. Next, another SLM, with capabilities similar to the target SLM, acts as a discriminator to verify each trajectory generated by the target SLM. The mutually agreed reasoning trajectories are considered mutual consistent, thus are more likely to be correct. Extensive experiments across five SLMs demonstrate rStar can effectively solve diverse reasoning problems, including GSM8K, GSM-Hard, MATH, SVAMP, and StrategyQA. Remarkably, rStar boosts GSM8K accuracy from 12.51% to 63.91% for LLaMA2-7B, from 36.46% to 81.88% for Mistral-7B, from 74.53% to 91.13% for LLaMA3-8B-Instruct. Code will be available at https://github.com/zhentingqi/rStar.
MITS: Enhanced Tree Search Reasoning for LLMs via Pointwise Mutual Information
Tree search has become as a representative framework for test-time reasoning with large language models (LLMs), exemplified by methods such as Tree-of-Thought and Monte Carlo Tree Search that explore multiple reasoning paths. However, it remains difficult to provide instant and reliable quantitative assessments of intermediate reasoning step quality, and extensive path exploration is computationally costly. To address this, we propose Mutual Information Tree Search (MITS), a novel framework that guides reasoning with information-theoretic principles. MITS introduces an effective scoring function based on pointwise mutual information (PMI), which enables step-wise evaluation of reasoning paths and search tree expansion via beam search without expensive look-ahead simulations, achieving superior reasoning performances while maintaining computational efficiency. The framework is complemented by an entropy-based dynamic sampling strategy that adaptively allocates computational resources to uncertain reasoning steps where exploration is most beneficial. For final prediction, MITS employs a weighted voting scheme that combines PMI scores with prediction consensus. Through comprehensive experiments on diverse reasoning benchmarks, MITS consistently surpasses baseline methods, establishing a principled and efficient framework for LLM reasoning.
OmniQuality-R: Advancing Reward Models Through All-Encompassing Quality Assessment
Current visual evaluation approaches are typically constrained to a single task. To address this, we propose OmniQuality-R, a unified reward modeling framework that transforms multi-task quality reasoning into continuous and interpretable reward signals for policy optimization. Inspired by subjective experiments, where participants are given task-specific instructions outlining distinct assessment principles prior to evaluation, we propose OmniQuality-R, a structured reward modeling framework that transforms multi-dimensional reasoning into continuous and interpretable reward signals. To enable this, we construct a reasoning-enhanced reward modeling dataset by sampling informative plan-reason trajectories via rejection sampling, forming a reliable chain-of-thought (CoT) dataset for supervised fine-tuning (SFT). Building on this, we apply Group Relative Policy Optimization (GRPO) for post-training, using a Gaussian-based reward to support continuous score prediction. To further stabilize the training and improve downstream generalization, we incorporate standard deviation (STD) filtering and entropy gating mechanisms during reinforcement learning. These techniques suppress unstable updates and reduce variance in policy optimization. We evaluate OmniQuality-R on three key IQA tasks: aesthetic quality assessment, technical quality evaluation, and text-image alignment.
ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models
Large Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities. While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe. Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces. After identifying the key challenges, we formally define the question-thought (QT) moderation task and propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer. To construct the model, we synthesize a high-quality reasoning safety detection dataset comprising over 8,000 question-thought pairs spanning ten risk categories and three safety levels. Our dataset construction process incorporates a comprehensive human-AI collaborative annotation pipeline, which achieves over 93% annotation accuracy while significantly reducing human costs. On a diverse set of in-distribution and out-of-distribution benchmarks, ReasoningShield outperforms mainstream content safety moderation models in identifying risks within reasoning traces, with an average F1 score exceeding 0.92. Notably, despite being trained on our QT dataset only, ReasoningShield also demonstrates competitive performance in detecting unsafe question-answer pairs on traditional benchmarks, rivaling baselines trained on 10 times larger datasets and base models, which strongly validates the quality of our dataset. Furthermore, ReasoningShield is built upon compact 1B/3B base models to facilitate lightweight deployment and provides human-friendly risk analysis by default. To foster future research, we publicly release all the resources.
DARA: Decomposition-Alignment-Reasoning Autonomous Language Agent for Question Answering over Knowledge Graphs
Answering Questions over Knowledge Graphs (KGQA) is key to well-functioning autonomous language agents in various real-life applications. To improve the neural-symbolic reasoning capabilities of language agents powered by Large Language Models (LLMs) in KGQA, we propose the DecompositionAlignment-Reasoning Agent (DARA) framework. DARA effectively parses questions into formal queries through a dual mechanism: high-level iterative task decomposition and low-level task grounding. Importantly, DARA can be efficiently trained with a small number of high-quality reasoning trajectories. Our experimental results demonstrate that DARA fine-tuned on LLMs (e.g. Llama-2-7B, Mistral) outperforms both in-context learning-based agents with GPT-4 and alternative fine-tuned agents, across different benchmarks in zero-shot evaluation, making such models more accessible for real-life applications. We also show that DARA attains performance comparable to state-of-the-art enumerating-and-ranking-based methods for KGQA.
VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization
Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.
Fleming-R1: Toward Expert-Level Medical Reasoning via Reinforcement Learning
While large language models show promise in medical applications, achieving expert-level clinical reasoning remains challenging due to the need for both accurate answers and transparent reasoning processes. To address this challenge, we introduce Fleming-R1, a model designed for verifiable medical reasoning through three complementary innovations. First, our Reasoning-Oriented Data Strategy (RODS) combines curated medical QA datasets with knowledge-graph-guided synthesis to improve coverage of underrepresented diseases, drugs, and multi-hop reasoning chains. Second, we employ Chain-of-Thought (CoT) cold start to distill high-quality reasoning trajectories from teacher models, establishing robust inference priors. Third, we implement a two-stage Reinforcement Learning from Verifiable Rewards (RLVR) framework using Group Relative Policy Optimization, which consolidates core reasoning skills while targeting persistent failure modes through adaptive hard-sample mining. Across diverse medical benchmarks, Fleming-R1 delivers substantial parameter-efficient improvements: the 7B variant surpasses much larger baselines, while the 32B model achieves near-parity with GPT-4o and consistently outperforms strong open-source alternatives. These results demonstrate that structured data design, reasoning-oriented initialization, and verifiable reinforcement learning can advance clinical reasoning beyond simple accuracy optimization. We release Fleming-R1 publicly to promote transparent, reproducible, and auditable progress in medical AI, enabling safer deployment in high-stakes clinical environments.
Unveiling Chain of Step Reasoning for Vision-Language Models with Fine-grained Rewards
Chain of thought reasoning has demonstrated remarkable success in large language models, yet its adaptation to vision-language reasoning remains an open challenge with unclear best practices. Existing attempts typically employ reasoning chains at a coarse-grained level, which struggles to perform fine-grained structured reasoning and, more importantly, are difficult to evaluate the reward and quality of intermediate reasoning. In this work, we delve into chain of step reasoning for vision-language models, enabling assessing reasoning step quality accurately and leading to effective reinforcement learning and inference-time scaling with fine-grained rewards. We present a simple, effective, and fully transparent framework, including the step-level reasoning data, process reward model (PRM), and reinforcement learning training. With the proposed approaches, our models set strong baselines with consistent improvements on challenging vision-language benchmarks. More importantly, we conduct a thorough empirical analysis and ablation study, unveiling the impact of each component and several intriguing properties of inference-time scaling. We believe this paper serves as a baseline for vision-language models and offers insights into more complex multimodal reasoning. Our dataset, PRM, and code will be available at https://github.com/baaivision/CoS.
SoundMind: RL-Incentivized Logic Reasoning for Audio-Language Models
While large language models have shown reasoning capabilities, their application to the audio modality, particularly in large audio-language models (ALMs), remains significantly underdeveloped. Addressing this gap requires a systematic approach, involving a capable base model, high-quality reasoning-oriented audio data, and effective training algorithms. In this study, we present a comprehensive solution: we introduce the Audio Logical Reasoning (ALR) dataset, consisting of 6,446 text-audio annotated samples specifically designed for complex reasoning tasks. Building on this resource, we propose SoundMind, a rule-based reinforcement learning (RL) algorithm tailored to endow ALMs with deep bimodal reasoning abilities. By training Qwen2.5-Omni-7B on the ALR dataset using SoundMind, our approach achieves state-of-the-art performance in audio logical reasoning. This work highlights the impact of combining high-quality, reasoning-focused datasets with specialized RL techniques, advancing the frontier of auditory intelligence in language models. Our code and the proposed dataset are available at https://github.com/xid32/SoundMind.
ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for Accurate RTL Code Generation
Recent advances in large language models (LLMs) have enabled near-human performance on software coding benchmarks, but their effectiveness in RTL code generation remains limited due to the scarcity of high-quality training data. While prior efforts have fine-tuned LLMs for RTL tasks, they do not fundamentally overcome the data bottleneck and lack support for test-time scaling due to their non-reasoning nature. In this work, we introduce ScaleRTL, the first reasoning LLM for RTL coding that scales up both high-quality reasoning data and test-time compute. Specifically, we curate a diverse set of long chain-of-thought reasoning traces averaging 56K tokens each, resulting in a dataset of 3.5B tokens that captures rich RTL knowledge. Fine-tuning a general-purpose reasoning model on this corpus yields ScaleRTL that is capable of deep RTL reasoning. Subsequently, we further enhance the performance of ScaleRTL through a novel test-time scaling strategy that extends the reasoning process via iteratively reflecting on and self-correcting previous reasoning steps. Experimental results show that ScaleRTL achieves state-of-the-art performance on VerilogEval and RTLLM, outperforming 18 competitive baselines by up to 18.4% on VerilogEval and 12.7% on RTLLM.
SiriuS: Self-improving Multi-agent Systems via Bootstrapped Reasoning
Multi-agent AI systems powered by large language models (LLMs) are increasingly applied to solve complex tasks. However, these systems often rely on fragile, manually designed prompts and heuristics, making optimization difficult. A key challenge in optimizing multi-agent systems is acquiring suitable training data for specialized agents. We introduce SiriuS, a self-improving, reasoning-driven optimization framework for multi-agent systems. Central to our approach is the construction of an experience library: a repository of high-quality reasoning trajectories. The library is built by retaining reasoning steps that lead to successful outcomes, providing a robust training set for optimizing multi-agent system. Additionally, we introduce a library augmentation procedure that refines unsuccessful trajectories, further enriching the library. SiriuS boosts performance by 2.86\% to 21.88\% on reasoning and biomedical QA and enhances agent negotiation in competitive settings. Our results show that SiriuS enhances multi-agent performance while generating reusable data for self-correction and self-play enhancement in the future.
Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
BMMR: A Large-Scale Bilingual Multimodal Multi-Discipline Reasoning Dataset
In this paper, we introduce BMMR, a large-scale bilingual, multimodal, multi-disciplinary reasoning dataset for the community to develop and evaluate large multimodal models (LMMs). BMMR comprises 110k college-level questions spanning 300 UNESCO-defined subjects, spanning diverse formats-multiple-choice, fill-in-the-blank, and open-ended QA-and sourced from both print and digital media such as books, exams, and quizzes. All data are curated and filtered via a human-in-the-loop and scalable framework, and each instance is paired with a high-quality reasoning path. The dataset is organized into two parts: BMMR-Eval that comprises 20,458 high-quality instances to comprehensively assess LMMs' knowledge and reasoning across multiple disciplines in both Chinese and English; and BMMR-Train that contains 88,991 instances to support further research and development, extending the current focus on mathematical reasoning to diverse disciplines and domains. In addition, we propose the process-based multi-discipline verifier (i.e., BMMR-Verifier) for accurate and fine-grained evaluation of reasoning paths. Extensive experiments on 24 models reveal that (i) even SOTA models (e.g., o3 and Gemini-2.5-Pro) leave substantial headroom on BMMR-Eval; (ii) reasoning models exhibit discipline bias and outperform LMMs only on specific subjects; (iii) open-source models still trail their proprietary counterparts; and (iv) fine-tuning on BMMR-Train narrows this gap. Additionally, we conduct reasoning-chain analyses using BMMR-Verifier and other in-depth studies, uncovering the challenges LMMs currently face in multidisciplinary reasoning. We will release the data, and we hope our work can offer insights and contributions to the community.
Fin-PRM: A Domain-Specialized Process Reward Model for Financial Reasoning in Large Language Models
Process Reward Models (PRMs) have emerged as a promising framework for supervising intermediate reasoning in large language models (LLMs), yet existing PRMs are primarily trained on general or Science, Technology, Engineering, and Mathematics (STEM) domains and fall short in domain-specific contexts such as finance, where reasoning is more structured, symbolic, and sensitive to factual and regulatory correctness. We introduce Fin-PRM, a domain-specialized, trajectory-aware PRM tailored to evaluate intermediate reasoning steps in financial tasks. Fin-PRM integrates step-level and trajectory-level reward supervision, enabling fine-grained evaluation of reasoning traces aligned with financial logic. We apply Fin-PRM in both offline and online reward learning settings, supporting three key applications: (i) selecting high-quality reasoning trajectories for distillation-based supervised fine-tuning, (ii) providing dense process-level rewards for reinforcement learning, and (iii) guiding reward-informed Best-of-N inference at test time. Experimental results on financial reasoning benchmarks, including CFLUE and FinQA, demonstrate that Fin-PRM consistently outperforms general-purpose PRMs and strong domain baselines in trajectory selection quality. Downstream models trained with Fin-PRM yield substantial improvements with baselines, with gains of 12.9\% in supervised learning, 5.2\% in reinforcement learning, and 5.1\% in test-time performance. These findings highlight the value of domain-specialized reward modeling for aligning LLMs with expert-level financial reasoning. Our project resources will be available at https://github.com/aliyun/qwen-dianjin.
Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning
Large language models (LLMs) have shown great potential in complex reasoning tasks, yet their performance is often hampered by the scarcity of high-quality, reasoning-focused training datasets. Addressing this challenge, we propose Key-Point-Driven Data Synthesis (KPDDS), a novel data synthesis framework that synthesizes question-answer pairs by leveraging key points and exemplar pairs from authentic data sources. KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability. As a result, we present KPMath, the most extensive synthetic dataset tailored for mathematical reasoning to date, comprising over one million question-answer pairs. Utilizing KPMath and augmenting it with additional reasoning-intensive corpora, we create the comprehensive KPMath-Plus dataset. Fine-tuning the Mistral-7B model on KPMath-Plus yields a zero-shot PASS@1 accuracy of 39.3% on the MATH test set, a performance that not only outpaces other finetuned 7B models but also exceeds that of certain 34B models. Our ablation studies further confirm the substantial enhancement in mathematical reasoning across various subtopics, marking a significant stride in LLMs' reasoning capabilities.
MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
DreamPRM: Domain-Reweighted Process Reward Model for Multimodal Reasoning
Reasoning has improved the performance of large language models (LLMs) on complicated tasks. Central to the current reasoning studies, Process Reward Models (PRMs) offer a fine-grained evaluation of intermediate reasoning steps and guide the reasoning process. However, extending PRMs to multimodal large language models (MLLMs) introduces challenges. Since multimodal reasoning covers a wider range of tasks compared to text-only scenarios, the resulting distribution shift from the training to testing sets is more severe, leading to greater generalization difficulty. Training a reliable multimodal PRM, therefore, demands large and diverse datasets to ensure sufficient coverage. However, current multimodal reasoning datasets suffer from quality imbalance, which degrades PRM performance and highlights the need for data selection strategy. To address the issues, we introduce DreamPRM, a domain-reweighted training framework for multimodal PRMs which employs bi-level optimization. In the lower-level optimization, DreamPRM performs fine-tuning on multiple datasets with domain weights, allowing the PRM to prioritize high-quality reasoning signals and alleviating the impact of dataset quality imbalance. In the upper-level optimization, the PRM is evaluated on a separate meta-learning dataset; this feedback updates the domain weights through an aggregation loss function, thereby improving the generalization capability of trained PRM. Extensive experiments on multiple multimodal reasoning benchmarks covering both mathematical and general reasoning show that test-time scaling with DreamPRM consistently improves performance of state-of-the-art MLLMs. Further comparisons reveal that DreamPRM's domain-reweighting strategy surpasses data selection methods and yields higher accuracy gains than existing test-time scaling approaches. Codes are available at https://github.com/coder-qicao/DreamPRM.
Retro-Search: Exploring Untaken Paths for Deeper and Efficient Reasoning
Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.
Chain-of-Thought Matters: Improving Long-Context Language Models with Reasoning Path Supervision
Recent advances in Large Language Models (LLMs) have highlighted the challenge of handling long-context tasks, where models need to reason over extensive input contexts to aggregate target information. While Chain-of-Thought (CoT) prompting has shown promise for multi-step reasoning, its effectiveness for long-context scenarios remains underexplored. Through systematic investigation across diverse tasks, we demonstrate that CoT's benefits generalize across most long-context scenarios and amplify with increasing context length. Motivated by this critical observation, we propose LongRePS, a process-supervised framework that teaches models to generate high-quality reasoning paths for enhanced long-context performance. Our framework incorporates a self-sampling mechanism to bootstrap reasoning paths and a novel quality assessment protocol specifically designed for long-context scenarios. Experimental results on various long-context benchmarks demonstrate the effectiveness of our approach, achieving significant improvements over outcome supervision baselines on both in-domain tasks (+13.6/+3.8 points for LLaMA/Qwen on MuSiQue) and cross-domain generalization (+9.3/+8.1 points on average across diverse QA tasks). Our code, data and trained models are made public to facilitate future research.
ToolMind Technical Report: A Large-Scale, Reasoning-Enhanced Tool-Use Dataset
Large Language Model (LLM) agents have developed rapidly in recent years to solve complex real-world problems using external tools. However, the scarcity of high-quality trajectories still hinders the development of stronger LLM agents. Most existing works on multi-turn dialogue synthesis validate correctness only at the trajectory level, which may overlook turn-level errors that can propagate during training and degrade model performance. To address these limitations, we introduce ToolMind, a large-scale, high-quality tool-agentic dataset with 160k synthetic data instances generated using over 20k tools and 200k augmented open-source data instances. Our data synthesis pipeline first constructs a function graph based on parameter correlations and then uses a multi-agent framework to simulate realistic user-assistant-tool interactions. Beyond trajectory-level validation, we employ fine-grained turn-level filtering to remove erroneous or suboptimal steps, ensuring that only high-quality reasoning traces are retained. This approach mitigates error amplification during training while preserving self-corrective reasoning signals essential for robust tool-use learning. Models fine-tuned on ToolMind show significant improvements over baselines on several benchmarks.
Deep Think with Confidence
Large Language Models (LLMs) have shown great potential in reasoning tasks through test-time scaling methods like self-consistency with majority voting. However, this approach often leads to diminishing returns in accuracy and high computational overhead. To address these challenges, we introduce Deep Think with Confidence (DeepConf), a simple yet powerful method that enhances both reasoning efficiency and performance at test time. DeepConf leverages model-internal confidence signals to dynamically filter out low-quality reasoning traces during or after generation. It requires no additional model training or hyperparameter tuning and can be seamlessly integrated into existing serving frameworks. We evaluate DeepConf across a variety of reasoning tasks and the latest open-source models, including Qwen 3 and GPT-OSS series. Notably, on challenging benchmarks such as AIME 2025, DeepConf@512 achieves up to 99.9% accuracy and reduces generated tokens by up to 84.7% compared to full parallel thinking.
MiMo-VL Technical Report
We open-source MiMo-VL-7B-SFT and MiMo-VL-7B-RL, two powerful vision-language models delivering state-of-the-art performance in both general visual understanding and multimodal reasoning. MiMo-VL-7B-RL outperforms Qwen2.5-VL-7B on 35 out of 40 evaluated tasks, and scores 59.4 on OlympiadBench, surpassing models with up to 78B parameters. For GUI grounding applications, it sets a new standard with 56.1 on OSWorld-G, even outperforming specialized models such as UI-TARS. Our training combines four-stage pre-training (2.4 trillion tokens) with Mixed On-policy Reinforcement Learning (MORL) integrating diverse reward signals. We identify the importance of incorporating high-quality reasoning data with long Chain-of-Thought into pre-training stages, and the benefits of mixed RL despite challenges in simultaneous multi-domain optimization. We also contribute a comprehensive evaluation suite covering 50+ tasks to promote reproducibility and advance the field. The model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-VL.
mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding
Structure information is critical for understanding the semantics of text-rich images, such as documents, tables, and charts. Existing Multimodal Large Language Models (MLLMs) for Visual Document Understanding are equipped with text recognition ability but lack general structure understanding abilities for text-rich document images. In this work, we emphasize the importance of structure information in Visual Document Understanding and propose the Unified Structure Learning to boost the performance of MLLMs. Our Unified Structure Learning comprises structure-aware parsing tasks and multi-grained text localization tasks across 5 domains: document, webpage, table, chart, and natural image. To better encode structure information, we design a simple and effective vision-to-text module H-Reducer, which can not only maintain the layout information but also reduce the length of visual features by merging horizontal adjacent patches through convolution, enabling the LLM to understand high-resolution images more efficiently. Furthermore, by constructing structure-aware text sequences and multi-grained pairs of texts and bounding boxes for publicly available text-rich images, we build a comprehensive training set DocStruct4M to support structure learning. Finally, we construct a small but high-quality reasoning tuning dataset DocReason25K to trigger the detailed explanation ability in the document domain. Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks, improving the SOTA performance of MLLMs with a 7B LLM by more than 10 points in 5/10 benchmarks. Our codes, models, and datasets are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl1.5.
Can We Verify Step by Step for Incorrect Answer Detection?
Chain-of-Thought (CoT) prompting has marked a significant advancement in enhancing the reasoning capabilities of large language models (LLMs). Previous studies have developed various extensions of CoT, which focus primarily on enhancing end-task performance. In addition, there has been research on assessing the quality of reasoning chains in CoT. This raises an intriguing question: Is it possible to predict the accuracy of LLM outputs by scrutinizing the reasoning chains they generate? To answer this research question, we introduce a benchmark, R2PE, designed specifically to explore the relationship between reasoning chains and performance in various reasoning tasks spanning five different domains. This benchmark aims to measure the falsehood of the final output of LLMs based on the reasoning steps. To make full use of information in multiple reasoning chains, we propose the process discernibility score (PDS) framework that beats the answer-checking baseline by a large margin. Concretely, this resulted in an average of 5.1% increase in the F1 score across all 45 subsets within R2PE. We further demonstrate our PDS's efficacy in advancing open-domain QA accuracy. Data and code are available at https://github.com/XinXU-USTC/R2PE.
Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models
Large language models can perform various reasoning tasks by using chain-of-thought prompting, which guides them to find answers through step-by-step demonstrations. However, the quality of the prompts depends on the demonstrations given to the models, and creating many of them by hand is costly. We introduce Synthetic prompting, a method that leverages a few handcrafted examples to prompt the model to generate more examples by itself, and selects effective demonstrations to elicit better reasoning. Our method alternates between a backward and forward process to generate new examples. The backward process generates a question that match a sampled reasoning chain, so that the question is solvable and clear. The forward process produces a more detailed reasoning chain for the question, improving the quality of the example. We evaluate our method on numerical, symbolic, and algorithmic reasoning tasks, and show that it outperforms existing prompting techniques.
EduFlow: Advancing MLLMs' Problem-Solving Proficiency through Multi-Stage, Multi-Perspective Critique
Multimodal large language models (MLLMs) still perform poorly on scientific tasks, particularly those requiring multi-step and interpretable reasoning. Their limitations include insufficient scientific reasoning patterns, lack of global coherence in multi-step inference, and the absence of reflective self-correction, making them unreliable in structured scientific contexts. We introduce EduFlow, the first end-to-end framework that covers the full pipeline of educational scientific reasoning, including data selection, MCTS-based trajectory construction, model training, and output optimization. At its core is EduPRM, a process-aware reward model that critiques reasoning steps with tags and justifications. EduPRM is trained via curriculum learning on three complementary supervision sources: MCTS-guided trajectories, error-injected critiques, and teacher-student dialogues, enabling dynamic adaptation to multi-stage problem solving and iterative refinement during inference. We further propose EduMCTS, a domain-adapted search framework that introduces bootstrapping actions specifically designed for educational reasoning, such as a self-reflection mechanism that promotes reflective error correction. It further leverages EduPRM's fine-grained feedback to guide the search toward higher-quality reasoning trajectories. By applying self-consistency and rejection sampling, we constructed EduMCTS-160K, a large-scale dataset of educational reasoning trajectories. Extensive experiments demonstrate that EduFlow enhances reasoning consistency and coherence. Code, data, and models will be released.
A*-Decoding: Token-Efficient Inference Scaling
Inference-time scaling has emerged as a powerful alternative to parameter scaling for improving language model performance on complex reasoning tasks. While existing methods have shown strong performance gains under fixed compute budgets, there has been little focus on optimally utilizing that budget during inference. In this work, we introduce A*-decoding, a search-based inference-time strategy that builds on the A* search algorithm to optimally utilize a fixed compute budget by prioritizing high-quality reasoning paths during generation. We frame language model decoding as a structured search in a state space of partial solutions, applying the A* transition model to identify promising continuations guided by an external process supervision signal. In our experiments, A*-decoding reaches the performance levels of strong inference scaling baselines like best-of-N and particle filtering while using up to 3x fewer tokens and 30% fewer PRM passes under equivalent compute budgets. On the MATH500 and AIME 2024 benchmarks, A*-decoding enables Llama-3.2-1B-Instruct to match the performance of the 70x larger Llama-3.1-70B-Instruct, and allows Qwen3-1.7B to reach o1-like reasoning accuracy. These results highlight the power of structured search in decoding, offering an alternative to brute-force sampling or scale-driven gains. Our work demonstrates how thoughtful inference-time strategies can enhance reasoning in SLMs, pointing toward future advances in more efficient and scalable language model deployment.
Scaling RL to Long Videos
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 52K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In experiments, LongVILA-R1-7B achieves strong performance on long video QA benchmarks such as VideoMME. It also outperforms Video-R1-7B and even matches Gemini-1.5-Pro across temporal reasoning, goal and purpose reasoning, spatial reasoning, and plot reasoning on our LongVideo-Reason-eval benchmark. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. LongVILA-R1 demonstrates consistent performance gains as the number of input video frames scales. LongVILA-R1 marks a firm step towards long video reasoning in VLMs. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames / around 256k tokens).
FastMCTS: A Simple Sampling Strategy for Data Synthesis
Synthetic high-quality multi-step reasoning data can significantly enhance the performance of large language models on various tasks. However, most existing methods rely on rejection sampling, which generates trajectories independently and suffers from inefficiency and imbalanced sampling across problems of varying difficulty. In this work, we introduce FastMCTS, an innovative data synthesis strategy inspired by Monte Carlo Tree Search. FastMCTS provides a more efficient sampling method for multi-step reasoning data, offering step-level evaluation signals and promoting balanced sampling across problems of different difficulty levels. Experiments on both English and Chinese reasoning datasets demonstrate that FastMCTS generates over 30\% more correct reasoning paths compared to rejection sampling as the number of generated tokens scales up. Furthermore, under comparable synthetic data budgets, models trained on FastMCTS-generated data outperform those trained on rejection sampling data by 3.9\% across multiple benchmarks. As a lightweight sampling strategy, FastMCTS offers a practical and efficient alternative for synthesizing high-quality reasoning data. Our code will be released soon.
REL: Working out is all you need
Recent developments, particularly OpenAI's O1 model, have demonstrated the remarkable potential of Large Language Models (LLMs) for complex reasoning tasks. Through analysis of O1's outputs and provided sample Chain-of-Thought (CoT) demonstrations, we observe that it approaches problem-solving in a distinctly human-like manner, systematically brainstorming ideas, testing hypotheses, verifying results, and planning comprehensive solutions. These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models. In this paper, we hypothesize that this performance gap stems from the limited availability of high-quality reasoning process data in current training sets. We demonstrate that by constructing a specialized dataset focused on explicit problem-solving workflows ("worked solutions"), we can elicit substantially improved planning capabilities from existing models. Additionally, we propose the Reasoning Enhancement Loop (REL), a method for generating synthetic worked solutions.
TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
We introduce TableLLM, a robust large language model (LLM) with 13 billion parameters, purpose-built for proficiently handling tabular data manipulation tasks, whether they are embedded within documents or spreadsheets, catering to real-world office scenarios. We propose a distant supervision method for training, which comprises a reasoning process extension strategy, aiding in training LLMs to understand reasoning patterns more effectively as well as a cross-way validation strategy, ensuring the quality of the automatically generated data. To evaluate the performance of TableLLM, we have crafted a benchmark tailored to address both document and spreadsheet formats as well as constructed a well-organized evaluation pipeline capable of handling both scenarios. Thorough evaluations underscore the advantages of TableLLM when compared to various existing general-purpose and tabular data-focused LLMs. We have publicly released the model checkpoint, source code, benchmarks, and a web application for user interaction.
