new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 11

Singer Identification for Metaverse with Timbral and Middle-Level Perceptual Features

Metaverse is an interactive world that combines reality and virtuality, where participants can be virtual avatars. Anyone can hold a concert in a virtual concert hall, and users can quickly identify the real singer behind the virtual idol through the singer identification. Most singer identification methods are processed using the frame-level features. However, expect the singer's timbre, the music frame includes music information, such as melodiousness, rhythm, and tonal. It means the music information is noise for using frame-level features to identify the singers. In this paper, instead of only the frame-level features, we propose to use another two features that address this problem. Middle-level feature, which represents the music's melodiousness, rhythmic stability, and tonal stability, and is able to capture the perceptual features of music. The timbre feature, which is used in speaker identification, represents the singers' voice features. Furthermore, we propose a convolutional recurrent neural network (CRNN) to combine three features for singer identification. The model firstly fuses the frame-level feature and timbre feature and then combines middle-level features to the mix features. In experiments, the proposed method achieves comparable performance on an average F1 score of 0.81 on the benchmark dataset of Artist20, which significantly improves related works.

Offline Signature Verification on Real-World Documents

Research on offline signature verification has explored a large variety of methods on multiple signature datasets, which are collected under controlled conditions. However, these datasets may not fully reflect the characteristics of the signatures in some practical use cases. Real-world signatures extracted from the formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes. Moreover, they may have very high intra-class variations, where even genuine signatures resemble forgeries. In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures. Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs. We extensively evaluate different verification setups, fine-tuning strategies, and signature representation approaches to have a thorough analysis of the problem. Moreover, we conduct a human evaluation to show the challenging nature of the problem. We run experiments both on our custom dataset, as well as on the publicly available Tobacco-800 dataset. The experimental results validate the difficulty of offline signature verification on real-world documents. However, by employing the stamp cleaning process, we improve the signature verification performance significantly.