new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 20

Agentic Reasoning and Tool Integration for LLMs via Reinforcement Learning

Large language models (LLMs) have achieved remarkable progress in complex reasoning tasks, yet they remain fundamentally limited by their reliance on static internal knowledge and text-only reasoning. Real-world problem solving often demands dynamic, multi-step reasoning, adaptive decision making, and the ability to interact with external tools and environments. In this work, we introduce ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers), a unified framework that tightly couples agentic reasoning, reinforcement learning, and tool integration for LLMs. ARTIST enables models to autonomously decide when, how, and which tools to invoke within multi-turn reasoning chains, leveraging outcome-based RL to learn robust strategies for tool use and environment interaction without requiring step-level supervision. Extensive experiments on mathematical reasoning and multi-turn function calling benchmarks show that ARTIST consistently outperforms state-of-the-art baselines, with up to 22% absolute improvement over base models and strong gains on the most challenging tasks. Detailed studies and metric analyses reveal that agentic RL training leads to deeper reasoning, more effective tool use, and higher-quality solutions. Our results establish agentic RL with tool integration as a powerful new frontier for robust, interpretable, and generalizable problem-solving in LLMs.

  • 4 authors
·
Apr 28 2

VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use

Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

TIGER-Lab TIGER-Lab
·
Aug 31 4

ReTool: Reinforcement Learning for Strategic Tool Use in LLMs

While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.

  • 9 authors
·
Apr 15 4

ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities

Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.

  • 6 authors
·
Oct 8, 2024

MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use Capabilities in Large Language Models

As Large Language Models (LLMs) evolve from passive text generators to active reasoning agents capable of tool interaction, the Model Context Protocol (MCP) has emerged as a standardized framework for dynamic tool discovery and orchestration. Despite widespread industry adoption, existing evaluation methodologies fail to adequately assess tool utilization capabilities within this new paradigm. This paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate LLM performance in the MCP framework through a novel five-dimensional approach measuring: answer accuracy, tool selection efficiency, computational resource efficiency, parameter construction accuracy, and execution speed. Unlike conventional benchmarks that rely on subjective human evaluations or binary success metrics, MCP-RADAR employs objective, quantifiable measurements across multiple task domains including software engineering, mathematical reasoning, and general problem-solving. Our evaluations of leading commercial and open-source LLMs reveal distinctive capability profiles with significant trade-offs between accuracy, efficiency, and speed, challenging traditional single-metric performance rankings. Besides, we provide valuable guidance for developers to optimize their tools for maximum model compatibility and effectiveness. While focused on MCP due to its standardized approach, our methodology remains applicable across all LLM agent tool integration frameworks, providing valuable insights for both LLM developers and tool creators to optimize the entire LLM-tool interaction ecosystem. The implementation, configurations, and datasets used in our evaluation are publicly available at https://anonymous.4open.science/r/MCPRadar-B143.

  • 5 authors
·
May 22

Teaching a Language Model to Speak the Language of Tools

External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.

  • 1 authors
·
Jun 29 1

EnvX: Agentize Everything with Agentic AI

The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.

AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenge

This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis to clarify their divergent design philosophies and capabilities. We begin by outlining the search strategy and foundational definitions, characterizing AI Agents as modular systems driven by Large Language Models (LLMs) and Large Image Models (LIMs) for narrow, task-specific automation. Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements. In contrast, Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy. Through a sequential evaluation of architectural evolution, operational mechanisms, interaction styles, and autonomy levels, we present a comparative analysis across both paradigms. Application domains such as customer support, scheduling, and data summarization are contrasted with Agentic AI deployments in research automation, robotic coordination, and medical decision support. We further examine unique challenges in each paradigm including hallucination, brittleness, emergent behavior, and coordination failure and propose targeted solutions such as ReAct loops, RAG, orchestration layers, and causal modeling. This work aims to provide a definitive roadmap for developing robust, scalable, and explainable AI agent and Agentic AI-driven systems. >AI Agents, Agent-driven, Vision-Language-Models, Agentic AI Decision Support System, Agentic-AI Applications

  • 3 authors
·
May 15 2

HASHIRU: Hierarchical Agent System for Hybrid Intelligent Resource Utilization

Rapid Large Language Model (LLM) advancements are fueling autonomous Multi-Agent System (MAS) development. However, current frameworks often lack flexibility, resource awareness, model diversity, and autonomous tool creation. This paper introduces HASHIRU (Hierarchical Agent System for Hybrid Intelligent Resource Utilization), a novel MAS framework enhancing flexibility, resource efficiency, and adaptability. HASHIRU features a "CEO" agent dynamically managing specialized "employee" agents, instantiated based on task needs and resource constraints (cost, memory). Its hybrid intelligence prioritizes smaller, local LLMs (via Ollama) while flexibly using external APIs and larger models when necessary. An economic model with hiring/firing costs promotes team stability and efficient resource allocation. The system also includes autonomous API tool creation and a memory function. Evaluations on tasks like academic paper review (58% success), safety assessments (100% on a JailbreakBench subset), and complex reasoning (outperforming Gemini 2.0 Flash on GSM8K: 96% vs. 61%; JEEBench: 80% vs. 68.3%; SVAMP: 92% vs. 84%) demonstrate HASHIRU's capabilities. Case studies illustrate its self-improvement via autonomous cost model generation, tool integration, and budget management. HASHIRU offers a promising approach for more robust, efficient, and adaptable MAS through dynamic hierarchical control, resource-aware hybrid intelligence, and autonomous functional extension. Source code and benchmarks are available at https://github.com/HASHIRU-AI/HASHIRU and https://github.com/HASHIRU-AI/HASHIRUBench respectively, and a live demo is available at https://hashiruagentx-hashiruai.hf.space upon request.

  • 3 authors
·
Jun 1 2

AI Agentic Programming: A Survey of Techniques, Challenges, and Opportunities

AI agentic programming is an emerging paradigm in which large language models (LLMs) autonomously plan, execute, and interact with external tools like compilers, debuggers, and version control systems to iteratively perform complex software development tasks. Unlike conventional code generation tools, agentic systems are capable of decomposing high-level goals, coordinating multi-step processes, and adapting their behavior based on intermediate feedback. These capabilities are transforming the software development practice. As this emerging field evolves rapidly, there is a need to define its scope, consolidate its technical foundations, and identify open research challenges. This survey provides a comprehensive and timely review of AI agentic programming. We introduce a taxonomy of agent behaviors and system architectures, and examine core techniques including planning, memory and context management, tool integration, and execution monitoring. We also analyze existing benchmarks and evaluation methodologies used to assess coding agent performance. Our study identifies several key challenges, including limitations in handling long context, a lack of persistent memory across tasks, and concerns around safety, alignment with user intent, and collaboration with human developers. We discuss emerging opportunities to improve the reliability, adaptability, and transparency of agentic systems. By synthesizing recent advances and outlining future directions, this survey aims to provide a foundation for research and development in building the next generation of intelligent and trustworthy AI coding agents.

  • 4 authors
·
Aug 14

ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools

We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.

  • 56 authors
·
Jun 18, 2024 2

Visual Agentic Reinforcement Fine-Tuning

A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.

  • 9 authors
·
May 20 2

Building Math Agents with Multi-Turn Iterative Preference Learning

Recent studies have shown that large language models' (LLMs) mathematical problem-solving capabilities can be enhanced by integrating external tools, such as code interpreters, and employing multi-turn Chain-of-Thought (CoT) reasoning. While current methods focus on synthetic data generation and Supervised Fine-Tuning (SFT), this paper studies the complementary direct preference learning approach to further improve model performance. However, existing direct preference learning algorithms are originally designed for the single-turn chat task, and do not fully address the complexities of multi-turn reasoning and external tool integration required for tool-integrated mathematical reasoning tasks. To fill in this gap, we introduce a multi-turn direct preference learning framework, tailored for this context, that leverages feedback from code interpreters and optimizes trajectory-level preferences. This framework includes multi-turn DPO and multi-turn KTO as specific implementations. The effectiveness of our framework is validated through training of various language models using an augmented prompt set from the GSM8K and MATH datasets. Our results demonstrate substantial improvements: a supervised fine-tuned Gemma-1.1-it-7B model's performance increased from 77.5% to 83.9% on GSM8K and from 46.1% to 51.2% on MATH. Similarly, a Gemma-2-it-9B model improved from 84.1% to 86.3% on GSM8K and from 51.0% to 54.5% on MATH.

  • 13 authors
·
Sep 3, 2024 2

MCP-AgentBench: Evaluating Real-World Language Agent Performance with MCP-Mediated Tools

The Model Context Protocol (MCP) is rapidly emerging as a pivotal open standard, designed to enhance agent-tool integration and interoperability, and is positioned to unlock a new era of powerful, interconnected, and genuinely utilitarian agentic AI. However, despite MCP's growing adoption, existing benchmarks often fail to capture real-world agent performance within this new paradigm, leading to a distorted perception of their true operational value and an inability to reliably differentiate proficiencies. To bridge this critical evaluation gap, we introduce MCP-AgentBench -- a comprehensive benchmark specifically engineered to rigorously assess language agent capabilities in MCP-mediated tool interactions. Core contributions of MCP-AgentBench include: the establishment of a robust MCP testbed comprising 33 operational servers with 188 distinct tools; the development of a benchmark featuring 600 systematically designed queries distributed across 6 distinct categories of varying interaction complexity; and the introduction of MCP-Eval, a novel outcome-oriented evaluation methodology prioritizing real-world task success. Through extensive empirical evaluation of leading language agents, we provide foundational insights. MCP-AgentBench aims to equip the research community with a standardized and reliable framework to build, validate, and advance agents capable of fully leveraging MCP's transformative benefits, thereby accelerating progress toward truly capable and interoperable AI systems.

  • 6 authors
·
Sep 10 3

From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review

Large language models and autonomous AI agents have evolved rapidly, resulting in a diverse array of evaluation benchmarks, frameworks, and collaboration protocols. However, the landscape remains fragmented and lacks a unified taxonomy or comprehensive survey. Therefore, we present a side-by-side comparison of benchmarks developed between 2019 and 2025 that evaluate these models and agents across multiple domains. In addition, we propose a taxonomy of approximately 60 benchmarks that cover general and academic knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments. Furthermore, we review AI-agent frameworks introduced between 2023 and 2025 that integrate large language models with modular toolkits to enable autonomous decision-making and multi-step reasoning. Moreover, we present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, chemical reasoning, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance. We then survey key agent-to-agent collaboration protocols, namely the Agent Communication Protocol (ACP), the Model Context Protocol (MCP), and the Agent-to-Agent Protocol (A2A). Finally, we discuss recommendations for future research, focusing on advanced reasoning strategies, failure modes in multi-agent LLM systems, automated scientific discovery, dynamic tool integration via reinforcement learning, integrated search capabilities, and security vulnerabilities in agent protocols.

  • 3 authors
·
Apr 28

K-Dense Analyst: Towards Fully Automated Scientific Analysis

The complexity of modern bioinformatics analysis has created a critical gap between data generation and developing scientific insights. While large language models (LLMs) have shown promise in scientific reasoning, they remain fundamentally limited when dealing with real-world analytical workflows that demand iterative computation, tool integration and rigorous validation. We introduce K-Dense Analyst, a hierarchical multi-agent system that achieves autonomous bioinformatics analysis through a dual-loop architecture. K-Dense Analyst, part of the broader K-Dense platform, couples planning with validated execution using specialized agents to decompose complex objectives into executable, verifiable tasks within secure computational environments. On BixBench, a comprehensive benchmark for open-ended biological analysis, K-Dense Analyst achieves 29.2% accuracy, surpassing the best-performing language model (GPT-5) by 6.3 percentage points, representing nearly 27% improvement over what is widely considered the most powerful LLM available. Remarkably, K-Dense Analyst achieves this performance using Gemini 2.5 Pro, which attains only 18.3% accuracy when used directly, demonstrating that our architectural innovations unlock capabilities far beyond the underlying model's baseline performance. Our insights demonstrate that autonomous scientific reasoning requires more than enhanced language models, it demands purpose-built systems that can bridge the gap between high-level scientific objectives and low-level computational execution. These results represent a significant advance toward fully autonomous computational biologists capable of accelerating discovery across the life sciences.

  • 5 authors
·
Aug 9

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2

Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services

The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "N times M problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.

  • 6 authors
·
Sep 7

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Recent benchmarks for Large Language Model (LLM) agents primarily focus on evaluating reasoning, planning, and execution capabilities, while another critical component-memory, encompassing how agents memorize, update, and retrieve long-term information-is under-evaluated due to the lack of benchmarks. We term agents with memory mechanisms as memory agents. In this paper, we identify four core competencies essential for memory agents: accurate retrieval, test-time learning, long-range understanding, and conflict resolution. Existing datasets either rely on limited context lengths or are tailored for static, long-context settings like book-based QA, which do not reflect the interactive, multi-turn nature of memory agents that incrementally accumulate information. Furthermore, no existing benchmarks cover all four competencies. Therefore, we introduce MemoryAgentBench, a new benchmark specifically designed for memory agents. Our benchmark combines reformulated existing datasets with newly constructed ones, covering the above four memory competencies, providing a systematic and challenging testbed for assessing memory quality. We evaluate a diverse set of memory agents, ranging from simple context-based and retrieval-augmented generation (RAG) systems to advanced agents with external memory modules and tool integration. Empirical results reveal that current methods fall short of mastering all four competencies, underscoring the need for further research into comprehensive memory mechanisms for LLM agents.

  • 3 authors
·
Jul 7 2

State and Memory is All You Need for Robust and Reliable AI Agents

Large language models (LLMs) have enabled powerful advances in natural language understanding and generation. Yet their application to complex, real-world scientific workflows remain limited by challenges in memory, planning, and tool integration. Here, we introduce SciBORG (Scientific Bespoke Artificial Intelligence Agents Optimized for Research Goals), a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution. Agents are constructed dynamically from source code documentation and augmented with finite-state automata (FSA) memory, enabling persistent state tracking and context-aware decision-making. This approach eliminates the need for manual prompt engineering and allows for robust, scalable deployment across diverse applications via maintaining context across extended workflows and to recover from tool or execution failures. We validate SciBORG through integration with both physical and virtual hardware, such as microwave synthesizers for executing user-specified reactions, with context-aware decision making and demonstrate its use in autonomous multi-step bioassay retrieval from the PubChem database utilizing multi-step planning, reasoning, agent-to-agent communication and coordination for execution of exploratory tasks. Systematic benchmarking shows that SciBORG agents achieve reliable execution, adaptive planning, and interpretable state transitions. Our results show that memory and state awareness are critical enablers of agentic planning and reliability, offering a generalizable foundation for deploying AI agents in complex environments.

  • 15 authors
·
Jun 29

Adaptive Multi-Agent Reasoning via Automated Workflow Generation

The rise of Large Reasoning Models (LRMs) promises a significant leap forward in language model capabilities, aiming to tackle increasingly sophisticated tasks with unprecedented efficiency and accuracy. However, despite their impressive performance, recent studies have highlighted how current reasoning models frequently fail to generalize to novel, unseen problems, often resorting to memorized solutions rather than genuine inferential reasoning. Such behavior underscores a critical limitation in modern LRMs, i.e., their tendency toward overfitting, which in turn results in poor generalization in problem-solving capabilities. In this paper, we introduce Nexus Architect, an enhanced iteration of our multi-agent system framework, Nexus, equipped with a novel automated workflow synthesis mechanism. Given a user's prompt and a small set of representative examples, the Architect autonomously generates a tailored reasoning workflow by selecting suitable strategies, tool integrations, and adversarial techniques for a specific problem class. Furthermore, the Architect includes an iterative prompt refinement mechanism that fine-tunes agents' system prompts to maximize performance and improve the generalization capabilities of the system. We empirically evaluate Nexus Architect by employing an off-the-shelf, non-reasoning model on a custom dataset of challenging logical questions and compare its performance against state-of-the-art LRMs. Results show that Nexus Architect consistently outperforms existing solutions, achieving up to a 66% increase in pass rate over Gemini 2.5 Flash Preview, nearly 2.5times against Claude Sonnet 4 and DeepSeek-R1, and over 3times w.r.t. Llama 4 Scout.

  • 4 authors
·
Jul 18

Explain Before You Answer: A Survey on Compositional Visual Reasoning

Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.

  • 13 authors
·
Aug 24 2

Tool-Augmented Reward Modeling

Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.

  • 7 authors
·
Oct 2, 2023

Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning

Conventional recommender systems (RSs) face challenges in precisely capturing users' fine-grained preferences. Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools that may help address these challenges. However, existing LLM-based RSs suffer from hallucinations, misalignment between the semantic space of items and the behavior space of users, or overly simplistic control strategies (e.g., whether to rank or directly present existing results). To bridge these gap, we introduce ToolRec, a framework for LLM-empowered recommendations via tool learning that uses LLMs as surrogate users, thereby guiding the recommendation process and invoking external tools to generate a recommendation list that aligns closely with users' nuanced preferences. We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity. The process factors in the nuances of the context and user preferences. The LLM then invokes external tools based on a user's attribute instructions and probes different segments of the item pool. We consider two types of attribute-oriented tools: rank tools and retrieval tools. Through the integration of LLMs, ToolRec enables conventional recommender systems to become external tools with a natural language interface. Extensive experiments verify the effectiveness of ToolRec, particularly in scenarios that are rich in semantic content.

  • 6 authors
·
May 23, 2024

Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol

Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.

  • 3 authors
·
Mar 7 2

ToolGen: Unified Tool Retrieval and Calling via Generation

As large language models (LLMs) advance, their inability to autonomously execute tasks by directly interacting with external tools remains a critical limitation. Traditional methods rely on inputting tool descriptions as context, which is constrained by context length and requires separate, often inefficient, retrieval mechanisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the LLM's parameters by representing each tool as a unique token. This enables the LLM to generate tool calls and arguments as part of its next token prediction capabilities, seamlessly blending tool invocation with language generation. Our framework allows the LLM to access and utilize a vast amount of tools with no additional retrieval step, significantly enhancing both performance and scalability. Experimental results with over 47,000 tools show that ToolGen not only achieves superior results in both tool retrieval and autonomous task completion but also sets the stage for a new era of AI agents that can adapt to tools across diverse domains. By fundamentally transforming tool retrieval into a generative process, ToolGen paves the way for more versatile, efficient, and autonomous AI systems. ToolGen enables end-to-end tool learning and opens opportunities for integration with other advanced techniques such as chain-of-thought and reinforcement learning, thereby expanding the practical capabilities of LLMs.

  • 6 authors
·
Oct 4, 2024

A Digital Twin Framework for Physical-Virtual Integration in V2X-Enabled Connected Vehicle Corridors

Transportation Cyber-Physical Systems (T-CPS) enhance safety and mobility by integrating cyber and physical transportation systems. A key component of T-CPS is the Digital Twin (DT), a virtual representation that enables simulation, analysis, and optimization through real-time data exchange and communication. Although existing studies have explored DTs for vehicles, communications, pedestrians, and traffic, real-world validations and implementations of DTs that encompass infrastructure, vehicles, signals, communications, and more remain limited due to several challenges. These include accessing real-world connected infrastructure, integrating heterogeneous, multi-sourced data, ensuring real-time data processing, and synchronizing the digital and physical systems. To address these challenges, this study develops a traffic DT based on a real-world connected vehicle corridor. Leveraging the Cellular Vehicle-to-Everything (C-V2X) infrastructure in the corridor, along with communication, computing, and simulation technologies, the proposed DT accurately replicates physical vehicle behaviors, signal timing, communications, and traffic patterns within the virtual environment. Building upon the previous data pipeline, the digital system ensures robust synchronization with the physical environment. Moreover, the DT's scalable and redundant architecture enhances data integrity, making it capable of supporting future large-scale C-V2X deployments. Furthermore, its ability to provide feedback to the physical system is demonstrated through applications such as signal timing adjustments, vehicle advisory messages, and incident notifications. The proposed DT is a vital tool in T-CPS, enabling real-time traffic monitoring, prediction, and optimization to enhance the reliability and safety of transportation systems.

  • 7 authors
·
Sep 30, 2024

MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use

With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.

  • 9 authors
·
Aug 26

SkyReconNet: A Cross-Resolution Contextual Integration Framework for Inpainting with Application to Enhanced CMB Map Reconstruction

We introduce a novel neural network, SkyReconNet, which combines the expanded receptive fields of dilated convolutional layers along with standard convolutions, to capture both the global and local features for reconstructing the missing information in an image. We implement our network to inpaint the masked regions in a full-sky Cosmic Microwave Background (CMB) map. Inpainting CMB maps is a particularly formidable challenge when dealing with extensive and irregular masks, such as galactic masks which can obscure substantial fractions of the sky. The hybrid design of SkyReconNet leverages the strengths of standard and dilated convolutions to accurately predict CMB fluctuations in the masked regions, by effectively utilizing the information from surrounding unmasked areas. During training, the network optimizes its weights by minimizing a composite loss function that combines the Structural Similarity Index Measure (SSIM) and mean squared error (MSE). SSIM preserves the essential structural features of the CMB, ensuring an accurate and coherent reconstruction of the missing CMB fluctuations, while MSE minimizes the pixel-wise deviations, enhancing the overall accuracy of the predictions. The predicted CMB maps and their corresponding angular power spectra align closely with the targets, achieving the performance limited only by the fundamental uncertainty of cosmic variance. The network's generic architecture enables application to other physics-based challenges involving data with missing or defective pixels, systematic artefacts etc. Our results demonstrate its effectiveness in addressing the challenges posed by large irregular masks, offering a significant inpainting tool not only for CMB analyses but also for image-based experiments across disciplines where such data imperfections are prevalent.

  • 3 authors
·
Jan 10

Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments

Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.

  • 10 authors
·
Aug 12 2

PhishNet: A Phishing Website Detection Tool using XGBoost

PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.

  • 4 authors
·
Jun 29, 2024

VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use

While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.

  • 10 authors
·
Oct 21, 2024

InfoMosaic-Bench: Evaluating Multi-Source Information Seeking in Tool-Augmented Agents

Information seeking is a fundamental requirement for humans. However, existing LLM agents rely heavily on open-web search, which exposes two fundamental weaknesses: online content is noisy and unreliable, and many real-world tasks require precise, domain-specific knowledge unavailable from the web. The emergence of the Model Context Protocol (MCP) now allows agents to interface with thousands of specialized tools, seemingly resolving this limitation. Yet it remains unclear whether agents can effectively leverage such tools -- and more importantly, whether they can integrate them with general-purpose search to solve complex tasks. Therefore, we introduce InfoMosaic-Bench, the first benchmark dedicated to multi-source information seeking in tool-augmented agents. Covering six representative domains (medicine, finance, maps, video, web, and multi-domain integration), InfoMosaic-Bench requires agents to combine general-purpose search with domain-specific tools. Tasks are synthesized with InfoMosaic-Flow, a scalable pipeline that grounds task conditions in verified tool outputs, enforces cross-source dependencies, and filters out shortcut cases solvable by trivial lookup. This design guarantees both reliability and non-triviality. Experiments with 14 state-of-the-art LLM agents reveal three findings: (i) web information alone is insufficient, with GPT-5 achieving only 38.2% accuracy and 67.5% pass rate; (ii) domain tools provide selective but inconsistent benefits, improving some domains while degrading others; and (iii) 22.4% of failures arise from incorrect tool usage or selection, highlighting that current LLMs still struggle with even basic tool handling.

  • 13 authors
·
Oct 2

Deep Research Agents: A Systematic Examination And Roadmap

The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.

Learning Type Inference for Enhanced Dataflow Analysis

Statically analyzing dynamically-typed code is a challenging endeavor, as even seemingly trivial tasks such as determining the targets of procedure calls are non-trivial without knowing the types of objects at compile time. Addressing this challenge, gradual typing is increasingly added to dynamically-typed languages, a prominent example being TypeScript that introduces static typing to JavaScript. Gradual typing improves the developer's ability to verify program behavior, contributing to robust, secure and debuggable programs. In practice, however, users only sparsely annotate types directly. At the same time, conventional type inference faces performance-related challenges as program size grows. Statistical techniques based on machine learning offer faster inference, but although recent approaches demonstrate overall improved accuracy, they still perform significantly worse on user-defined types than on the most common built-in types. Limiting their real-world usefulness even more, they rarely integrate with user-facing applications. We propose CodeTIDAL5, a Transformer-based model trained to reliably predict type annotations. For effective result retrieval and re-integration, we extract usage slices from a program's code property graph. Comparing our approach against recent neural type inference systems, our model outperforms the current state-of-the-art by 7.85% on the ManyTypes4TypeScript benchmark, achieving 71.27% accuracy overall. Furthermore, we present JoernTI, an integration of our approach into Joern, an open source static analysis tool, and demonstrate that the analysis benefits from the additional type information. As our model allows for fast inference times even on commodity CPUs, making our system available through Joern leads to high accessibility and facilitates security research.

  • 6 authors
·
Oct 1, 2023 1

Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation

The rapid growth of biomedical knowledge has outpaced our ability to efficiently extract insights and generate novel hypotheses. Large language models (LLMs) have emerged as a promising tool to revolutionize knowledge interaction and potentially accelerate biomedical discovery. In this paper, we present a comprehensive evaluation of LLMs as biomedical hypothesis generators. We construct a dataset of background-hypothesis pairs from biomedical literature, carefully partitioned into training, seen, and unseen test sets based on publication date to mitigate data contamination. Using this dataset, we assess the hypothesis generation capabilities of top-tier instructed models in zero-shot, few-shot, and fine-tuning settings. To enhance the exploration of uncertainty, a crucial aspect of scientific discovery, we incorporate tool use and multi-agent interactions in our evaluation framework. Furthermore, we propose four novel metrics grounded in extensive literature review to evaluate the quality of generated hypotheses, considering both LLM-based and human assessments. Our experiments yield two key findings: 1) LLMs can generate novel and validated hypotheses, even when tested on literature unseen during training, and 2) Increasing uncertainty through multi-agent interactions and tool use can facilitate diverse candidate generation and improve zero-shot hypothesis generation performance. However, we also observe that the integration of additional knowledge through few-shot learning and tool use may not always lead to performance gains, highlighting the need for careful consideration of the type and scope of external knowledge incorporated. These findings underscore the potential of LLMs as powerful aids in biomedical hypothesis generation and provide valuable insights to guide further research in this area.

  • 9 authors
·
Jul 11, 2024

Agent-SafetyBench: Evaluating the Safety of LLM Agents

As large language models (LLMs) are increasingly deployed as agents, their integration into interactive environments and tool use introduce new safety challenges beyond those associated with the models themselves. However, the absence of comprehensive benchmarks for evaluating agent safety presents a significant barrier to effective assessment and further improvement. In this paper, we introduce Agent-SafetyBench, a comprehensive benchmark designed to evaluate the safety of LLM agents. Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions. Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%. This highlights significant safety challenges in LLM agents and underscores the considerable need for improvement. Through quantitative analysis, we identify critical failure modes and summarize two fundamental safety detects in current LLM agents: lack of robustness and lack of risk awareness. Furthermore, our findings suggest that reliance on defense prompts alone is insufficient to address these safety issues, emphasizing the need for more advanced and robust strategies. We release Agent-SafetyBench at https://github.com/thu-coai/Agent-SafetyBench to facilitate further research and innovation in agent safety evaluation and improvement.

  • 7 authors
·
Dec 18, 2024 2

ChatGPT for Robotics: Design Principles and Model Abilities

This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics.

  • 4 authors
·
Feb 20, 2023

TaTToo: Tool-Grounded Thinking PRM for Test-Time Scaling in Tabular Reasoning

Process Reward Models (PRMs) have recently emerged as a powerful framework for enhancing the reasoning capabilities of large reasoning models (LRMs), particularly in the context of test-time scaling (TTS). However, their potential for supervising LRMs on tabular reasoning domains remains underexplored. Through detailed empirical analyses, we identify that existing PRMs, though widely adopted for supervising text-only reasoning steps, struggle with table-specific operations such as sub-table retrieval and schema interaction, leading to critical performance bottlenecks. To address this limitation, we propose TaTToo, a novel table-grounded PRM framework that (i) reasons explicitly over tabular reasoning steps and (ii) integrates tool-based verification to provide precise reward supervision. Concretely, we first design a scalable data curation pipeline that constructs over 60k high-quality step-level annotations by integrating table verification rationales with tool-based executions. Building on the collected data, we train TaTToo with a dual-stage paradigm: cold-start supervised fine-tuning to capture tool-use reasoning patterns, followed by reinforcement learning with tool-grounded reward shaping to align our model with table-based verification. We provide a comprehensive evaluation of the policy improvement induced by our newly designed PRM. Across 5 challenging tabular reasoning benchmarks covering numerical reasoning, fact-checking, and data analysis, TaTToo improves downstream policy LRMs by 30.9% at inference, surpasses strong PRM baselines such as Qwen-2.5-Math-PRM-72B with only 8B parameters, and demonstrates strong generalizability across diverse TTS strategies.

amazon Amazon
·
Oct 7 3